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Abstract 
 
In this paper structural analysis and synthesis of kinematic 
chains of lever mechanisms and structure groups (which 
are known as Assur groups) are submitted. These analysis 
and synthesis base on the new opened structural properties 
of the kinematic chains. Conditions and limitations, which 
were accepted, discussed.  
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1 Introduction 

One of the tasks in the theory of mechanisms is re-
searching  principles of building structural schemes of 
lever mechanisms, including special types of kinematic 
chains - structural groups.  

For a solution of this problem various techniques were 
offered. [1-4] . The traditional approach was the selection 
of feasible mechanisms based on some observations. In-
feasible and isomorphic representatives were deleted from 
the search according to the set of constraints. Though 
many of these techniques were successfully used, it is ob-
vious, that they become ineffective at a solution of com-
plex problems. It is seems expedient for their solution to 
use the techniques based on the mathematical graph theory 
and a theory of combinations. So, for classification of a 
structure of mechanisms Freudenstein used the theory 
of Polya [5]. He together with Buchsbaum [6] used net-
work concepts  and the combinatory analysis for synthesis 
of  kinematic chains of mechanisms. Yan and Hwang [7] 
proposed the algorithm based on concepts of the combina-
tory theory and permutation groups, for count the number 
of non-isomorphic mechanisms with the required number 
and types of links and joints of kinematic chains. Yan and 
Hung [8] presented a method of identification and count 
the number of non-isomorphic mechanisms from kine-
matic chains subject to constraints of adjacency or incidence 
relations among  links and joints, based on the theory of 
Polya and a generating function. They expanded their pre-
vious work and presented concept of the modified permuta-
tion groups [9]. Using variables to indicate the remaining 
links in modified permutation groups and based on con-
cept of a generating function and the theory of Polya it is 
possible to work out more constraints simultaneously. Yan 
and Hung [10] have presented also a technique for count-

ing the number of non-isomorphic mechanisms with re-
quired constraints based on  generating function and the 
Theory of Polya. 
However, existing methods have a some shortages. The 
basic among them is lack of uniformity of construction of 
schemes. It can be overcome by studying of their general 
structural properties.  
Among other known principles of structural classification 
of lever mechanisms, the Assur’s principle is fruitful. The 
main structural element in this classification of mecha-
nisms is the structural group (further SG) – Assur group. 
Classical definition of structural group is formulating as 
follows «… indivisible kinematic chain which degree of 
mobility is equal to zero at connection in its external ki-
nematic pairs to a frame». However, what means an attrib-
ute «indivisible kinematic chain»? More often, this under-
stands as that the given kinematic chain cannot divide into 
more simple kinematic chains. But following examples 
among many others show, that kinematic chains, being 
structural groups, in practice it is possible to build of more 
simple kinematic chains as shown in Fig.(1). 
 

 
 
Figure 1: The dividing of SG on elementary chains. 
 
 Nevertheless resulted, these schemes are schemes of 
structural groups. From here, it is possible to draw a con-
clusion that the attribute - «indivisible» in definition of 
structural groups is necessary for specifying research of 
their structure more in detailed.  

2   Basic Assumptions and Parities Ac-
cepted at Structural Analysis of Kine-
matic Chains  

Let's consider flat structural groups, which parts are con-
necting among them by, revolute kinematic pairs - flat 
hinges. As shown in [11] such assumption will not influ-
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ence a generality of reasoning, but will allow presenting 
SG by corresponding mathematical objects - simple graphs. 
Generally SG contains parts with two kinematic pairs - 
levers, and parts which have more than two hinges - base 
parts Fig. (2). 
 For unification of SG structure, we shall present every 
base part as a truss consisting of levers, which are connect-
ing by hinges so that the base part has been broken into 
rigid triangles as shown in Fig. (2).  
 

 
 
Figure 2:   Representation of base part as a truss. 
 

 Such replacement does not break parity between 
number of parts and number of kinematic pairs that Tche-
byshev's formula (for definition a degree of SG mobility) 
is fair. Really, let the base part has m points in which 
hinges are located and which are motionless from each 
other. At replacement of a base part by a truss, these points 
also should remain motionless from each other. Therefore, 
in a flat truss between them it is necessary to install 2m-3 
connections (levers). Thus, m levers it is possible to place 
so, that they form an external contour of a base part and 
2m-3-m = m-3 levers form connections between tops inside 
a contour. Then it is easy to count up, that the number of 
hinges in a truss is equal 3m-6. (At replacement of a base 
part by a truss the number of base parts will decrease on 
one, but the number of levers and hinges will increase). 
Therefore, after similar replacement, Tchebyshev's for-
mula can be writing down: 

pn
mpmn




23
))63((2))32(1(3      (1) 

Here p is number of hinges in initial SG, n is number of 
parts in initial SG. 

Thus, at replacement of base parts with trusses it is re-
ceived equivalent mechanical system. 

 

 3    Structural Analysis of SG  

Let's correspond structural group to its graphic representa-
tion - graph. In the graph, edges are images of levers, and 
tops - the points where kinematic pairs are displaying.  

Any internal top of the graph has a degree (number of 
incidental edges) 3  and corresponds to 1  kine-
matic pairs. Each external top of the second degree corre-
sponds to two hinges. The external top of the first degree 
corresponds to one hinge. Therefore, Tchebyshev's for-
mula for SG graph can be writing down as follows: 







3
21 )1(2

2
3


 pppn

      (2) 

Here 1p  is number of tops of the first degree, 2p is num-

ber of tops of the second degree, 
p is number of tops of 

the    degree. 
Based on the known parity of the graph’s theory [12] 

the formula is fair for SG graph: 





3

21 22


 pppn .            (3) 

Subtracting Eq. (2) from Eq. (3), we shall receive par-
ity between number of edges and number of internal tops 
for SG graph: 





32 

pn
                               (4) 

Let's introduce for SG graph operation of splitting of a 
top, which consists of two steps: 
1) A degree of the top reduces by elimination of an inci-
dental edge. 
2) A new top place on the eliminated edge as shown in Fig. 
(3). 
 

 
 
Figure 3:   Operation of splitting of the graph’s top number 
1. 
 

Graph of any structural group can be presenting in the 
form of a dichotomizing tree by the help of operation of 
splitting as shown in Fig. (3) and in Fig. (4). 

 

 
 

Figure 4:   Directed SG graph and it dichotomizing chain. 
 
Let's pass from the graph to the directed SG graph as 

shown in Fig. (4). In this case a necessary and sufficient 
condition of construction of a dichotomizing tree is exis-
tence only two arcs leaving each internal top of the graph. 
Since applying operation of splitting to each top and enter-
ing arcs (keeping only one input arc in a top), we shall 
receive a dichotomizing tree Fig. (4). In this case, external 
tops of the first and the second degrees must have only 
input arcs. 

For any directed graph, it is possible to build a 0, 1 ad-
jacency matrix [12] in which number of every line and a 
column corresponds to number of a top in the graph. The 
element of a matrix is equal 1 if the arc input into the top 
with number of a column from the top with number of a 
line. The element of a matrix is equal 0 in other case. For 
such matrix the sum of elements in lines is equal to the 
sum of elements in columns (number of output arcs is 
equal to number of input arcs), therefore for any directed 
SG graph it is possible to build following Table 1. 
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Table 1: Distribution of entering and coming arcs in SG 
graph  
 

The degree 
of a top 

The common 
number of out-

puts 

The common num-
ber of inputs 

1 - 
1p  

2 - 
22 p  

  p2   p )2(  

 
Based on the noted property of a adjacency matrix we 

shall write: 

 



3

21 )2(22
 

  pppp     (5) 

Or 

 
 


3 3

21 042
 

 pppp        (6) 

Eq. (4) received above, therefore after its substitution 
in Eq. (6) we shall have: 





3

21 022


 nppp            (7) 

  We come to known Eq. (3), as confirms an opportu-
nity of realization of the set directions of arcs in directed 
SG graph. I.e. graph of any structural group can be pre-
senting in the form of a dichotomizing tree by the help of 
operation of splitting.  

Numerous examples of decomposition of SG allow 
assuming that any SG can be spreading out not only in a 
dichotomizing tree, but also in a dichotomizing chain as 
shown in Fig. (5). It is possible to assume also, that mathe-
matically it corresponds to finding Hamiltonian path be-
tween internal tops for the SG graph. It is obvious that the 
dichotomizing chain can be constructing for the some SG 
connected with each other consistently. If any SG con-
nected in parallel, such connection can be spreading out in 
a dichotomizing tree. Search Hamilton’s way into the 
graph carry out according to the algorithm [13] for exam-
ple. 
 

 
 
Figure 5: Examples of decomposition of SG graphs in di-
chotomizing chains. 
 

The dichotomizing tree and dichotomizing chain 
are represented in Fig. (6). As against a dichotomizing tree 
the dichotomizing chain has no bifurcations and its any top 
is adjacent to top of the first degree. 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Dichotomizing tree and dichotomizing chain. 

 

4   Structural Synthesis of SG 

If any SG graph can be presenting in the form of a di-
chotomizing chain by the operation of splitting of tops, it 
is obvious, that it is possible to receive SG graph or graph 
of consistently connected groups from a similar chain by 
return operations.  

 

 
 

Figure 7: Initial graph. 
 

Initial graph can consist of any number of consistently 
connected dyads as shown in Fig. (7). In this case, opera-
tion of synthesis of SG graph is reducing to overlapping 
trailing tops of the initial graph with its internal tops, i.e. 
operation of overlapping of tops is return to operation of 
splitting of tops. 

It is always possible to correspond the initial graph to 
the initial adjacency matrix Table 2. Such matrix contains 
(2·d+1) columns and d lines, here d is number of dyads in 
the initial graph. In the initial graph, internal tops num-
bered at first and then trailing tops are numbered. There-
fore, the matrix consists of two parts. In the left part, col-
umns with numbers of internal tops, and in the right part 
columns with numbers of trailing tops are located. The 
letter «е» in a matrix means, that the internal top corre-
sponding number of a line is connecting by an edge with 
the internal top corresponding number of a column. Figure 
«1» in the right part of an initial matrix means that the top 
corresponding number of a line is connecting by the edge 
with a trailing top corresponding number of a column. The 
letter «i» means the same, as figure «1», but using for con-
venience of the matrix description. 
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T a b l e  2 :  Adjacency matrix of the initial graph  
 

№ 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 х е     1 х х х х х х 
2 х х е     1 х х х х х 
3  х х е     1 х х х х 
4   х х е     1 х х х 
5    х х е     1 х х 
6     х х      1 i 

 
Operation of overlapping of the tops into the initial 

graph leads to synthesis of SG or generally the graph of a 
kinematic chain. This is correspond to moving «1» along a 
line from the right part of the initial matrix to any free cell 
of the left part. In the SG graph there cannot be loops and 
the double edges, therefore a symbol «x» notes corre-
sponding cells. Thus, synthesis of SG graphs is reducing to 
the search of variants of accommodation «1» in the left 
part of a matrix, by their moving from the right part. 

Moving «1» in the area of the right part of a matrix 
corresponds to the formation of external top of the second 
degree and this is a special case. However, it is interesting 
to note, that overlapping of two trailing tops, incidental to 
the same edge gives a triangular part with external top Fig. 
(2). And overlapping of trailing tops, incidental to different 
edges, leads to formation «paradoxical» groups [14]. Over-
lapping three or greater number of trailing tops in the ini-
tial graph is essentially possible in special case. 

It was marked above that from the initial graph it is 
possible to receive both SG graphs, and graphs of more 
complex compound kinematic chains. It is meaningful to 
synthesize structural groups separately. Obviously, thus on 
moving «1» in the initial matrix some restrictions are im-
posed. Let’s consider these restrictions more in detail. 

 Firstly, in the right part of initial matrix should re-
main not less than four «1». Really, if in SG graph to reject 
all external tops with incidental edges it will turn out graph 
of the closed kinematic chain which degree of relative mo-
bility should be ≥1. Differently it will be not a kinematic 
chain, but a base part. There is only one such group Fig. 
(3), since in this case the condition of static definability 
(for the group) will be: 

042)1(23  nnnw            (8) 
Here w is a degree of mobility of a kinematic chain, n is 
number of parts in the group. Whence n=4 
If degree of relative mobility of an internal kinematic 
chain is more or equal 1 it is possible to write down a fol-
lowing inequality: 

12)1(3  pnw                           (9) 
Where n  is number of edges in the graph, p  is number 
of kinematic pairs. 

The number of edges in the graph after rejection of 
external tops is defining by a following parity: 

sdn  2                                     (10) 
Here d  is number of dyads in the initial graph, s is num-
ber rejected levers (number of «1» in the right part of a 
adjacency matrix). 

The number of kinematic pairs in the remained kine-
matic chain is giving by expression 

sdsddp  232)1(1)1(2    (11) 
Let's substitute Eq. (10) and Eq. (11) in Eq. (9), after trans-
formations we shall have: 

13  sw  Or  4s  
It gives minimally possible number of «1» which should 
be remaining in the right part of an initial matrix. 

Secondly, SG should be “indivisible” kinematic chain. 
Definition of the “indivisible” kinematic chain can be giv-
ing, proceeding from the following reasoning. If  SG is 
«indivisible» at its formation trailing tops of the bottom 
level the initial graph necessarily join its internal tops so 
that coordinates of cells (n, m) and (i, j) of any two nearest 
lines in the left part of initial matrix in which settle down 
«1» satisfied to the parities:  

n> i,  i m,   j< m. 
Thus, the feedbacks between dyads in SG are carrying 

out as shown in Fig. (8) and in Table 3. 
 

 
 

Figure 8:  Feedbacks in the graph of the structural group. 

T a b l e  3 :  Adjacency matrix of SG graph Fig. 7  
 

№ 1 2 3 4 5 6 7 8 9 10 11 

1 x e    1 х х х х х 
2 х x e    1 х х х х 
3 1 х x e     х х х 
4   х x e    1 х х 
5  i  х х     1  

 
 

In the graph of the structural group all internal tops 
are placed feedback. This is the attribute of a group corre-
sponding to the term understanding as «indivisible kine-
matic chain».  

Presence of feedbacks in SG, overlapping all tops in 
its graph, corresponds to the fact that the system of the 
equations describing connections between tops in it does 
not break up to subsystems, which can be solving consis-
tently one after another.  

In a mechanism, feedbacks are absent between struc-
tural groups, therefore it is possible to spend the analysis 
of the mechanism consistently on groups, solving systems 
of the equations for each group separately. 

 If two or more structural groups to connect among 
them so that feedbacks in the new graph were blocking, 
the new structural group is forming in this case Fig. (9).  

Thirdly, in SG graph there cannot be double arcs. 
Their presence would mean that there are duplicating parts 
in a kinematic chain. Therefore, should not be «1» located 
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symmetrically concerning the main diagonal of the left 
part of SG matrix.  

The algorithm of search of variants of accommodation 
«1» is realized in the computer program with an opportu-
nity to spend synthesis as structural groups and compound 
kinematic lever chains. 
 

 
 

Figure 9: Formation new SG from two SG groups. 
 

At synthesis of the structural groups, it turns out many 
isomorphic graphs. It is required to spend selection none 
isomorphic representatives. It is a typical problem of the 
graph’s theory in the mathematics. There are enough algo-
rithms for the decision such problem, for example [15]. 
However, at search of the big number of variants the algo-
rithm, giving high speed of calculations with reference to 
conditions of a problem is necessary.  

At SG synthesis by the considered way a problem 
arise which essence can understand from Fig. (10). The 
structural group presented by the graph (a) is identical to 
the group presented by the graph (b). However, graphs (а) 
and (b) are not isomorphic. Graph (a) have specific inter-
nal top number 6 in which there is no relative mobility of 
edges incidental to it. In practice, such top can serve for 
formation in it the kinematic pair with other structural 
group. The similar top can be formed on any part by con-
nection to it a dyad. Let’s name the tops similar to the top 
6 as a passive top as shown in Fig. (10). At performance of 
SG synthesis, it is meaningful to reject the graphs contain-
ing such tops. 

The distinctive property of passive tops noted above, 
allows building the algorithm for their revealing. This al-
gorithm providing following operations with an adjacency 
matrix: 
1) Choose a next edge of the graph, not incidental to a 
trailing top. 
2) Find tops, adjacent with both tops, incidental to the 
given edge of the graph. Thus, we install set tops and ac-
cordingly the edges belonging to the base part. 
3) Step 2 carries out for each edge of the base part before 
full exhaustion of tops. 
 

 

Figure 10: Graphs of identical structural groups. 

4) Check up each top of a base part, whether it has the 
incidental top which is not belonging a base part. 

5) If the top of the base part, which is not having incidental 
tops outside of this part, found out then it is passive and 
graph can be rejecting. 

There are five kinds of the flat dyads Fig. (11).  
 

 

Figure 11: Kinds of the flat dyads. 

Therefore the classical problem of combination theory 
for everyone synthesized graph SG can be put. This is 
problem of definition of variants of an arrangement of dy-
ads of each kind in a dichotomizing chain of the graph. 
Such problem can be solving in conformity, for example, 
by the help of algorithm considered in [13]. 

5 Formation of Spatial SG 

At formation of spatial SG as the entry condition of 
static definability, we shall accept the condition: 

               046 4  pn                         (12)                                     
I.e. preliminary we shall build kinematic chains containing 
only spatial kinematic pairs of the 4-th class Fig. (12). The 
similar technique is using in [16]. 
 

 
 

Figure 12: Kinematic pairs of the fourth class. 
 

The parity of the static, which written down above, is 
equivalent to the following characteristic equation for flat 
SG: 

  023 4  pn                                 (13)                                                                         
Therefore, everything that stated for the flat groups it 

is fair for the spatial groups having pairs of the 4-th class 
only. Hence, such groups represent system of consistently 
connected dyads with feedbacks. If a group with pairs of 
the 4-th class is in disposal, it is possible to receive a group 
containing pairs of the 3-rd and the 5-th class. There are 
two known ways for this purpose: 
1) Replacement two pairs of the 4-th class by one pair of 
the 3-rd and one pair of the 5-th class, thus the balance of 
degrees of freedom of a dyad is keeping Fig. (13). Number 
of variants of an arrangement of kinematic pairs in a dyad 
at such way of formation of spatial group can be only four: 
4 - 4 - 4; 4 - 5 - 3; 5 - 3 - 4; 5 - 4 - 3. 
2) A pair of the 4-th class replace by two pairs of the 5-th 
class connected by lever. 

At performance of kinematical analysis of any spatial 
SG, it is possible to solve a return problem - reductions the 
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graph of this group to the scheme containing only pairs of 
the 4-th class. It will allow spreading out a graph of a 
group in a dichotomizing chain to reveal a structure of 
feedbacks between dyads in the group. 

 

 

Figure 13: Transformation of the spatial dyad. 

6  Transfer Function of SG 

 As shown above any SG consists of consistently con-
nected dyads with feedbacks. Every dyad is the elementary 
transforming device with two entrances (external kine-
matic pairs) and one exit (internal kinematic pair). Moving 
or speeds give to entrances with ones parameters and they 
take from exit with transformed parameters. Hence, each 
dyad has transfer function. There are five kinds of flat dy-
ads and some tens of spatial dyads. For each kind, transfer 
function is available. Let’s show how to define these trans-
fer function for the first kind of dyads Fig. (14).  
 

 
 

Figure 14: Scheme of the dyad for definition it transfer 
function. 

 
 For this dyad, we shall write down the system of 

equations: 

   
    








2

13
2

21
2

31

2
12

2
21

2
21

lyyxx

lyyxx
         (14) 

Here ix , iy  are coordinates of the appropriate points 

in chosen Cartesian system of coordinates; ijl  are lengths 
of the appropriate levers. 

After differentiation Eq. (14), we receive the follow-
ing system of equations: 
       
        







0''''
0''''

31313131

21212121

yyyyxxxx
yyyyxxxx

(15) 

Solve Eq. (15) for target parameters ',' 11 yx . In result 
after transformations, we receive the following matrix 
equality: 



























'
'

'
'

'
'

3

3

2

2

1

1

y
x

y
x

y
x

32 II           (16)        

These are matrixes of transfer function of the dyad from 
the point 2 to the point 1 and from the point 3 to the point 
1. The components of these matrixes are the following: 











2221

1211

22
22

ii
ii

2I , 









2221

1211

33
33

ii
ii

3I , 

2131

31
11 tantan

tan
2





i , 
2131

3121
12 tantan

tantan
2







i , 

2131
21 tantan

12
 


i , 

2131

21
22 tantan

tan2






i , 

2131

21
11 tantan

tan3






i , 

2131

3121
12 tantan

tantan
3







i , 

2131
21 tantan

13
 

i , 
2131

31
22 tantan

tan
3





i . 

  Having at disposal such transfer functions, it is possi-
ble to construct transfer function for any SG or lever 
mechanism. For example, if SG graph is available then its 
initial graph is certain Fig. (15). 
 

 
 
Figure 15: Scheme of SG for definition its transfer func-
tion. 
 
Write down for each dyad the equation for transfer func-
tion as Eq. (16). In result we receive the system of the 
equations Eq. (17) describing transfer function of SG.  



















































































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611

1312

II

II

II

II

II

II

           (17)  

 Similar equations may be applying for kinematical 
analysis and synthesis of lever mechanisms. 
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7  Conclusions 

The stated method of structural synthesis based on re-
vealed general structural properties of the kinematic chains, 
essentially allows constructing all possible SG. However, 
this problem has infinitely many decisions and cannot be 
end in itself. 

Kinematical properties of SG are closely connecting 
with their structure.  

The established law of a structure of kinematic chains 
gives the basis to put the next questions. At first, on what 
defines number of the dyads for reproduction demanded 
movement? At second, on what defines the rational or-
ganization of feedbacks between dyads for the reproduc-
tion demanded movement? Answers for these questions 
would enable to make purposeful structural synthesis of 
the kinematic chains for concrete conditions of movement. 

Thus, the main advantage of a method is that any As-
sur group can be built of the same-type elements - diads 
that gives additional opportunities for their analysis and a 
synthesis. 
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