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Abstract 

This paper discusses vibration analysis of three-layer 
sandwich beam. The present work deals with the analysis 
of vibration of the primary system having a mass and rub-
ber spring mounted on a three-layer simply supported 
symmetrically arranged with elastic faces and viscoelastic 
core sandwich beam. Based on the derivation of R.C. Das 
Vikal et. al, for response of harmonically excited mass and 
for transmissibility, the effectiveness of three-layered 
sandwich beam of viscoelastic core for central mounting of 
the primary system is evaluated. The thickness of viscoe-
lastic core is varied to get minimum value of response and 
transmissibility.  
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1. Introduction 

There has been a constant need for the light weight and 
high strength materials for various applications like aero-
space and automobiles. The sandwich structures are rela-
tively lighter in weight and less expensive. In sandwich 
structures the second moment of area of the cross-section 
of the structure is increased by separating face-sheets with 
a low density material, known as core of the sandwich 
structure. The face-sheets are made of a high strength and 
high modulus material. This results in the increased stiff-
ness and load bearing capacity of the sandwich structure in 
bending. 

In this paper the problem of a primary vibration excitation 
system in contact with a sandwich beam is considered. 
Work on the analysis of flexural vibrations of sandwich 
beams has been reported by many investigators [1-6]. To 
simplify the analysis these investigators have taken into 
consideration only the strain energy due to bending and 
longitudinal deformation of the elastic faces and that due 
to shear deformation of the core. This assumption is justi-
fied on practical grounds if the Young's modulus of the 
core is much smaller than the Young's modulus of the 
outer layers. In the work reported here, both the vibration 
response of a flexibly supported mass attached to a viscoe-
lastic core sandwich beam at its centre and the force 
transmissibility provided by the complete system have  

been computed, as both these aspects are important from 
the point of view of vibration control. 
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2. Problem Formulation 
 
Figure 1 shows the model system, which consists of a 
flexibly supported excitation system attached to the centre 
of a simply supported sandwich beam having a viscoelastic 
core and elastic faces. The vibrating excitation system, 
here designated as the primary system, consists of a mass 
and rubber spring whose dynamic charateristic is defined 
by the equation K* = K (1+ iδ), where K and δ are the 
stiffness and the loss factor respectively. A three-layered 
sandwich beam has face layers of thickness  and a core 
thickness . The face layers are purely elastic with 
Young’s modulus E. The core has a shear modulus 
G(1+iβ), β being the loss factor of the core material. Fig-
ure 2 shows the free body diagrams of the primary system 
and the sandwich beam. The concentrated harmonic force 

o is acting on the beam. The sandwich beam is analyzed 
for its dynamic stiffness with respect to Fo. 
 
3. Method of solution 
 
 The differential equation of a sandwich beam having elas-
tic faces and viscoelastic core is [6] 

w/� -g(1+Y) w/� =(1/ )( p/� - gp).                                
      (1) 
The assumptions under which equation (1) has been de-
rived are mentioned in reference [6]. For harmonic motion 
one can assume that 
 
 w(x,t)=W(x)exp(ift).                     (2)                                         
Then the inertia force p has the form 
 p=-m w(x,t)/� =W exp(ift)     (3)                                                                                    
Substitution of p and w from equations (2) and (3) into 
equation (1) gives 
 
 W/d -g(1+Y) W/d –
(m / ) W/d +(m / )gW=0,             (4) 
 
which is a simple linear differential equation of sixth order. 
Hence a solution of the form 
 
 W(x)=Aexp(σx)                           (5)   
 
 
can be assumed. Substitution of equation (5) into equation 
(4) yields the characteristic equation 
 
 -g(1+Y) -(m / ) +(m / )g=0,       (6)                                        
which is cubic in . The roots can be exactly determined 
[10]. The complete solution of differential equation (4) can 
then be expressed as 
  W(x)= exp( x).              (7)                                        
The constants , j = 1, 2, ..., 6, are to be obtained by ap-
plication of the boundary conditions of the beam. 
 
3.1. Boundary Coditions 
 

The beam can be imagined to be comprised of identical 
halves, each of which is acted upon by one-half of the ap-
plied force Fo at the junction point. The centre of the beam 
can now conveniently be taken as the origin. 
    For writing the boundary conditions one needs the ex-
pressions for , , , , 
and so on. These can be easily derived [6] and expressed 
as follows: 
   

= - = ( /gd)[ W/d -gY  
W/d -(m / )W],                  (8)     
 
  =( / E db)[ W/d -gY W/d –
{(m / )+ Y}dW/dx],         (9) 
  Bending moment=( /g)[- W/d  
+g(1+Y) W/d +(m / )W,    (10)            
Shear force=( /g)[- W/d  +g(1+Y) W/d  
+(m / )dW/dx],                                                  (11) 
The possible boundary conditions for a sandwich beam 
free at one end and simply supported at the other end are 
as follows: 
at x = 0 (at centre) 
     (i)  shear force =  Fo/2,   (ii) slope = dW/dx = 0,       
     (iii)  = 0; 
at x = l/2 (at right end) 
     (iv) defection = W = 0,  (v) bending moment = 0,   
     (vi)  = -  = 0.  
Applying the above six boundary conditions, with the help 
of equations (8) – (11), one obtains finally a matrix equa-
tion of the form 
     [C]{B}={H},                      (12)                  
 
where [C] is a square matrix of dimension 6x6. {B} and 
{H} are column matrices. The elements of these matrices 
are, for j = 1, 2, ..., 6, 
         
  = -  + g(1+Y) ,     = ,      =  - gY ,  

 = exp ( l/2),    = exp( l/2), = exp( l/2), 
  = /Fo,       = ,    j = 1, 

                                = 0,     j ≠ 1. 
Equation (12) can be solved for  ...,  The beam 
solution then can be written as 
    = exp( x).             (13)    
 
 
4. Response of Primary System and 
Transmissibility 
 
The equations of Response of Primary System and Trans-
missibility of a sandwich beam having elastic faces and 
viscoelastic core are [7] 
         / F =  

/ ,                      (14)  
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  T=                                           

      (15)  
                  
Table 1: Response of Primary System and Transmissibility 
at Constant Frequency and Varying Core Thickness. 
Sl 
N
o. 

Fre-
quency 
    (cps) 

Thick-
ness of 
core ( ) 
            
(cm) 

 (cm/N) T (db) 

1. 10 0.2 0.0067 5.72 
2. 10 0.4 0.0021 14.58 
3. 10 0.6 0.0017 18.03 
4. 10 0.8 0.0024 16.44 
5. 10 1.0 0.0012 38.42 
 
 
5.Results and Discussion 
 
Theoretical results deduced from equations (14) and (15) 
are plotted in Figures 3 and 4. Figures 3 and 4 show re-
spectively plots of theoretical curves representing the 
variation of the response of the primary system and the 
variation of the transmissibility provided by the complete 
system with core thickness.  
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Figure 3 Response vs Core thickness at constant frequency 
(10cps) 
 
 
The beam used is a MS – PVC – MS sandwich beam. Its 
dimensions were = 1 mm,  is varied from 2 mm to 10 
mm, l =500 mm and b = 80 mm. The dynamic properties 
of rubber and PVC were taken from experimentally ob-
tained values [8, 9] and these are given in Appendix 1. The 
main mass was taken as 1.8 kg. It can be seen that the in-
crease of core thickness results in a decrease of response 
but increase of transmissibility at the constant frequency of 
10 cps. Hence suitable values of core thickness is taken 
where both response and transmissibility are less.  

Transmissibility vs Core thickness
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Figure 4  Transmissibility vs Core thickness at constant 
frequency (10cps)  
 
6. Conclusion 
 
It can be concluded that a three-layered sandwich beam 
having a configuration symmetrical with respect to both 
geometrical and physical parameters provides a minimum 
response to the primary system as well as minimum trans-
missibility of the excitation force to the support. Further, it 
is found that the increase of core thickness  results in a 
decrease of response but increase of transmissibility at the 
constant frequency of 10 cps. Hence suitable value of core 
thickness  is taken where both response and transmissi-
bility are less. 
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Appendix 1: Dynamic Properties of 
Rubber and PVC Materials 
 
Dynamic stiffness and loss factor of rubber [8] at C: K 
= 850.0 + 28.3  N/cm, for   ≤ 45 Hz; K = 2500 N/cm, 
for  > 45 Hz; δ = 0.126. 
Shear modulus and loss factor of PVC [9] at C: G = 
420.0 + 2.5  N/  and β = 0.24 + 0.00125  for  ≤ 
80 Hz;  G = 570.0 + 0.667  N/  and β = 0.28 + 
0.00075  for  > 80 Hz. 
 
 Appendix2: Nomenclature 
 

  = / ,  j = 1,2, …, 6 
b    width of beam 
d  distance between neutral axes of elastic layers, = +  

 overall bending stiffness of elastic layers about their 
neutral axes, = E / 6 b 
E   Young's modulus of elastic layers 
F   exciting force 
f frequency in rad/s, and  frequency in Hz 
G  in-phase shear modulus of core material 

complex shear modulus of core material, = G ( 1+ i ) 
g   shear parameter, = 2 / E  

 thickness of jth layer 

i     
K dynamic stiffness of rubber material 
l      length of beam 
m    mass of the beam per unit length 
M  vibrating mass 
T   transmissibility 
x  co-ordinate along the length of beam 

 displacement of vibrating mass, function of x 
 displacement of vibrating mass, function of x and t  

Y dimensionless geometrical parameter, = ( b/ ) 
(E /2) 
β   loss factor of core material 
δ    loss factor of rubber 

 complex roots of characteristic equation (6) 
                                                                                                              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


