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Abstract 

Several reported studies have concluded that wheel-rail 
impact load due to a wheel flat predicted by commonly 
used Hertzian contact model underestimates the impact 
force due to a wheel flat between wheel and rail at low 
speeds and yields an overestimation at high speeds. In this 
study, an adaptive wheel-rail contact model with radial 
spring is developed for prediction of wheel-rail normal 
contact force. This proposed model adapts the contact 
length, contact depth and incorporates possible partial and 
asymmetry of the contact due to defective wheel profile. A 
vehicle-track interaction model incorporating a 2-D roll-
plane vehicle, 3-D Timoshenko track system coupled by 
the adaptive contact model is developed to investigate the 
impact force between the wheel and rail due to a single 
wheel flat. The simulation results were compared with 
those using Hertzian contact model and available field test 
data. The results demonstrate the effectiveness of the adap-
tive contact model in predicting wheel rail impact load due 
to a wheel flat in a wide speed range. 

Keywords: Adaptive Contact, Wheel-rail, Wheel Flat, and 
Impact Load 

1 Introduction 

Heavy haul freight cars generate significant force at the 
wheel-rail interface, which is further magnified when there 
is a defect in the wheel or rail profile. The rolling contact 
mechanism is a complex problem and has attracted numer-
ous investigations in the past few decades. In the mathe-
matical modeling and simulation of railway vehicle-track 
dynamics, it is the contact model that couples the vehicle 
system with track system. An accurate description of con-
tact force between the wheel and the rail is thus a neces-
sary condition to obtain reliable simulation results for the 
vehicle-track system. The most widely used vertical con-
tact model is based on Hertzian non-linear elastic contact 
theory, which describes the contact behavior of two cylin-
ders. Such contact model is essentially a point contact 
model based on the assumption that the contact patch is 
very small [1]. It is further assumed that the contact point 

lies on the centerline of the wheel. This is a reasonable 
assumption in modeling vertical contact forces between a 
perfect wheel and rail geometry. However, when there is a 
defect on the wheel or rail in the contact zone, the induced 
impact force predicted using Hertzian contact model may 
not be very reliable. A few studies have suggested that the 
Hertzian non-linear point contact model incorporating lin-
ear track model consistently underestimates wheel flat-
induced impact loads at low speeds, while overestimates at 
high speeds [2]. 
 Multipoint contact model has also been proposed to 
predict contact forces between wheel and rail with a defect 
such as a wheel flat [3]. Such a model, however, assumes 
that the vertical contact springs are discretely and symmet-
rically distributed about the vertical center line of wheel 
regardless of perfect or defective wheel and rail profile. In 
the wheel-rail vertical contact study [3], it has been shown 
that multipoint contact model estimates impact force very 
similar to that of Hertzian contact model. It is not difficult 
to visualize that in the presence of a defect, such as a 
wheel flat, the radial springs will not be symmetrically 
distributed about the vertical center line of wheel when the 
region with flat enters or leaves the contact area. 
 For the present investigation of impact forces due 
to wheel flats, an adaptive wheel-rail continuous contact 
model is developed to overcome the limitation of the pub-
lished models described above. The proposed model con-
siders the contact length, contact depth, and possible par-
tial contact due to defective wheel/rail profile. This adap-
tive contact model is based on the concept of continuous 
radial springs uniformly distributed over an adaptive 
wheel-rail footprint, which has been successfully utilized 
in study of ground vehicle contact problems associated 
with pneumatic tires [4]. 
 The adaptive contact model developed for wheel-rail 
vertical interaction neglects the lateral and longitudinal 
forces. It is also assumed that the contact patch is very 
small and does not exceed the length of the flat. Due to 
conical or worn profile of the railway wheel, wheel radius 
at the contact point always varies as the wheel rolls along 
the track. It is however, assumed that such variations due 
to possible lateral motion is small and that there is no slip 
between the wheel and rail. The adaptive contact mode is 
used in this investigation to couple a 6 DOF 2-D roll plane 
vehicle model with 3-D rail system modeled as continuous 
Timoshenko beam. The simulation results in term of 
wheel-rail impact force due to a wheel flat are obtained 
using central finite difference method for different forward 
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velocity. The results are compared with reported analytical 
and field test data over a wide speed range. 

2  Development of an Adaptive 
Wheel-rail Contact Model 

2.1 Contact Force for Perfect Wheel Profile 
 
The wheel-rail vertical interaction is represented by con-
tinuously distributed radial springs that take into account 
the stiffness of the wheel and the rail. As shown in Figure 
1, the contact patch is designated by contact length le. The 
radially distributed springs are assumed linear, while the 
constant radial spring stiffness Kw, is defined as the magni-
tude of force required to produce unit angular deformation 
of the spring. The contact force is developed by radial 
interpenetration of the wheel into the rail. The elemental 
radial deflection, δi, at an angle αi, leads to radial spring 
force dF as shown in Figure 1, such that: 
 

iiw )dK(dF δα=                                             (1) 

 
 
 
 
where αi is the angle between the vertical centerline of 
wheel plane and arbitrary contact point within the contact 
length. For an instantaneous wheel radius Ri, the elemental 
radial deflection δi can be expressed as:  

i
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where h is distance between the wheel center and the con-
tact patch center, given by: 

cwRh δ−=                                                              (3) 
where Rw is nominal wheel radius and δc is the wheel-rail 
deflection at contact patch center, or the wheel rail contact 
overlap. 

The normal and tangential components of the contact 
force, shown in Figure 1, can be expressed as: 
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Upon combining equations (2) to (4) and integrating 
over the entire contact patch (-αw, αw), the resultant wheel-

rail normal contact force with perfect contact profile can 
be expressed as: 

)cos(sinRKFP wwwwwn αα−α== 2                        (5) 
where αw is wheel-rail contact patch angle, which is de-
fined as half of the angle formed by a line connecting 
wheel center to the front contact point, and a line connect-
ing the wheel center to the rear contact point. A symmetric 
contact about the wheel center line is assumed for a defect 
free wheel. The contact angle can thus be expressed as: 
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The contact overlap δc can be determined from wheel 
center displacement zw and corresponding rail displace-
ment zr, such that: 
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From the above relationships, when the overlap δc and 
the contact force are equal to zero, the wheel contact angle 
is also zero. In this study, it is assumed that the rail wheel 
vertical displacements (zr, zw) are equal to zero when the 
wheel and the rail are just about to come into contact.  

2.2Contact Force for Defective Wheel Profile 

The contact model is extended to include a defect in the 
wheel profile in the form of a flat. As shown in Figure 2, 
the presence of a wheel flat could yield a contact patch that 
is asymmetric about the wheel centerline. For the contact 
patch defined by (αf, αr), combination of equations (2) to 
(4) and integration over the contact patch (αf, αr), yields 
resultant normal contact force as: 

i
f

r
i

i

cw
iwn dcos)

cos
R

R(KFP αα
α
δ−

−== ∫
α

α
    (8) 

 

 

where δc can be calculated from equation (7); Ri is the in-
stantaneous radius of the wheel at a position αi; αf and αr 
are positions of the extreme front and rear contact point. 
Form equation (8), it can be seen that computation of  
wheel-rail contact force requires: (i) determination of in-
stantaneous wheel radius Ri at any point of contact zone; 
(ii) determination of the contact patch, or front and rear 
contact angles (αf and αr) at every instant; and (iii) estab-
lishment of radial spring constant Kw. 
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Figure 1: Radial contact representation of wheel-
rail interactions 

Figure 2: Deflection of an element of wheel-rail contact 
patch with defective wheel 
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2.2.1 Determination of the Radius Ri at Arbitrary Point 
of Wheel Rim with a Flat 

The profile of a wheel with a flat can be described by its 
radius and corresponding angle β between a reference line 
and the radius, as shown in Figure 3. The flat is designated 
by line BB1 and the reference is chosen as the vertical line 
through wheel center. The initial position of the flat is de-
scribed by the angle between the reference line and the 
wheel flat center line (βo). The length of the flat is deter-
mined by arc angle φ, which represents half of the chord 
angle between OB and OB1. For a small flat length, this 
arc angle can be expressed as:  

w

f

R
l

2
=ϕ                                                                   (9) 

where lf is the length of flat and Rw is the nominal wheel 
radius. The instantaneous radius of wheel at arbitrary posi-
tion can now be simply expressed by: 
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where f is the variation in the wheel radius due to wheel 
flat, and is dependent upon the type of flat being consid-
ered. When the wheel flat is just formed, it takes the form 
of a chord. It is often referred to as “fresh flat” or “chord 
flat”. For fresh or chord type flat, f can be obtained by the 
geometry of the profile, such that: 
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In practice, the two ends of “chord” become rounded 
due to continuous running on the rail. This type flat is usu-
ally called “rounded flat”, or “worn flat”, or “haversine 
flat”.  The variations in the radius due to such a flat, f, can 
be described by [5]: 
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where Df is the depth of flat and can be estimated using 
following equation if it is unknown [5]: 
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The term x in equation (13) is the distance between an 
arbitrary point on the flat and the front end of the flat (des-

ignated by x in Figure 3), and can be expressed in terms of 
angle β, such that:  
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The instantaneous wheel radius can be then obtained 
as a function of position β by substituting for f into equa-
tion (10). In this study, only the haversine flat model is 
used to represent a flat with a given length and depth since 
this model is more commonly used and such type of flat is 
more commonly observed in practice.  

The position of the wheel flat with reference to verti-
cal centerline of wheel would vary as the wheel rotates.  
Figure 4 shows the flat position at an instant t, where the 
flat has shifted by an angle γ from the initial position. For a 
constant forward speed V, the angle γ can be expressed as: 

t
R
Vt

W
=ω=γ                                                       (16) 

The corresponding new position of flat is then given 
by βo – γ. By substituting (βo – γ) for βo in equations (15), 
(11) and (10), the instantaneous wheel radius Ri at any 
point including contact zone can be readily obtained for a 
rotating wheel. For a haversine type flat, f can be deter-
mined from equation (13) by substituting for x(t), given by:   

[ ] ϕ+γ−β≤β<ϕ−γ−βγ−β−β−+= ))t(()t())t((;))t(()t(tan)DR(
l
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(17) 

 
 
Figure 5 shows the variation in wheel radius at the 

contact patch center when rolling at a speed of 50 km/h. 
For this case the wheel and the flat are defined by: Rw = 
0.4572 m, lf  = 100 mm, Df  = 1.5 mm and βo = 90º. 

 
 

Figure 3: Wheel profile with a flat

Figure 4: Scheme of a rotating wheel with a flat 

Figure 5: Changes in effective rolling radius of a 
rotating wheel with a flat 
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2.2.2 Determination of the Contact Patch (αf, αr) 

As illustrated earlier in Figure 2, a wheel flat would yield 
asymmetric contact geometry about the vertical wheel cen-
terline. The analysis of this geometry involves identifica-
tion of the wheel-rail contact patch, or the extreme front 
and rear contact angles (αr, αf) in the presence of a flat, as 
shown in Figure 6. The figure also shows the contact ge-
ometry for perfect wheel, which is described by angle ±αw. 
The contact geometry is derived upon consideration of the 
displacements of wheel and rail, which yield overlap δc 
using equation (7). Furthermore, the instantaneous radius 
of wheel rim Ri is derived from equation (10). The posi-
tions of the front and rear contact point position (αf, αr) are 
derived from the corresponding radii R(αf) and R(αr), such 
that: 

cw
cw

R)cos(
R)cos(

δ−=α )α
δ−=α )α

rr
ff

R(
R(                         (18)    

Within the contact patch: 
cwR)cos( δ−>α )α iiR(                                 (19) 

And outside the contact patch: 
cwR)cos( δ−<α )α iiR(                                    (20) 

 

 
Above formulations suggest that an iterative approach 

can be adopted to verify the contact patch coordinates. 
Assuming a defect free wheel profile, contact patch angles 
are initially taken as –αw, αw. The wheel radii Ri at every 
point within αw are computed until the extreme contact 
points are established using the above requirements.  

2.2.3  Establishment of Wheel-Rail Contact Radial 
Spring Stiffness 

The effectiveness of the proposed adaptive contact model 
is largely dependent on the identification of reliable value 
for the radial spring constant Kw. Although experimental 
characterization would be desirable, an estimate of Kw may 
be obtained from analysis of wheel-rail interpenetration 
under a static load Po. Rewriting equation (5) yields an 
expression for the stiffness Kw: 

)cos(sinR
pK

wwww

o
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                    (21) 

where αw can be determined from equation (6).  
The static wheel rail overlap δo should be ideally de-

termined by experimentally measuring the static displace-
ment of rail and wheel center. Alternatively it can be de-

rived from the Hertzian non-linear contact theory by as-
suming that the contact patches calculated from the two 
different models is same under the same static load. 
Hertzian contact theory provides following relationship 
between applied load and wheel-rail overlap [1]: 

2
3

δ= HCP                                                            (22) 
where δ is the overlap between wheel and rail; and CH is 
the Hertzian contact coefficient. The above relationship 
can also be applied to determine static overlap of wheel 
and rail, δo, by assuming the contact force as the static load 
Po. 

3  Vehicle-track Interaction model 

The magnitudes of impact forces caused by wheel defects 
are strongly dependent upon vertical dynamics of the cou-
pled vehicle-track system. The analysis of wheel-rail con-
tact force response thus necessitates development of a rep-
resentative vehicle-track system model incorporating the 
contact model. In this work, the adaptive wheel rail contact 
model is applied to a three dimensional model of multiple 
layers track system in conjunction with roll plane model of 
the vehicle system. Such formulation permits for analysis 
of the influence of a wheel defect on the wheel-rail interac-
tion of not only the defective wheel but also the other 
wheel within the same axle.  

The simplified vehicle model consists of half bolster 
coupled to two half-sideframes through the secondary sus-
pension and a complete wheelset as shown in Figure 7. 
The various degrees of freedom include: the bounce (zb) 
and roll (φb) motions of the bolster; bounce motions of the 
left and right sideframes (zsfl ,zsfr); and the bounce (zw) and 
roll (φw) motions of the wheelset. 

The elements of primary suspension represented by K1, 
C1 and secondary suspension represented by K2, C2 are 
assumed to be linear. Load W stands for a quarter of car 
body weight, and acts on the center of the bolster. P1 and 
Pr are vertical forces at the wheel-rail contacts at the left 
and right wheels, respectively. The model neglects interac-
tions between the leading and trailing wheelsets within a 
bogie. The contributions of the car body dynamics are also 
considered to be relatively small due to its low natural 
frequency. The equations of motions of roll-plane vehicle 
model are expressed in the matrix form as follows: 

[ ]{ } [ ]{ } [ ]{ } { }FdKdCdM =++ &&&                           (23) 
Where [M], [C] and [K] are mass, damping and stiffness 
matrix, respectively; and vector {d} is the displacement 
vector; { }F  is the generalized external force vector. 

For a roll plane vehicle model, it is necessary to con-
sider a pair of rail system in three- dimension (3-D). For 
this investigation, two-layer track system model consisting 
of left and right rails, pads, sleepers and ballast elasticity is 
developed, as shown in Figure 8. Two rails are modeled as 
Timoshenko beams supported on the sleepers modeled as 
lumped masses, through the rail-pads and fasteners that are 
represented by springs and dampers. The ballast is mod-
eled as springs and dampers inserted between each discrete 
sleeper and subgrade.  
 

αw -αw 

αr αf h 

δc 

Reference line (α=0) 

V 

Figure 6: Identification of wheel rail contact patch 
(αf, αr) in specified co-ordinate system  
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A rail of length L, modeled as Timoshenko beam sup-

ported discretely by ‘n’ sleepers is shown in Figure 9. Both 
ends of the rail are assumed fixed, where ‘a’ denotes the 
spacing between two adjacent sleepers. Pc and Xw repre-
sent the vertical contact load and its location along the rail 
length. For the rail model with a moving point load Pc and 
discrete support forces Fi (Figure 9), the governing equa-
tions for vertical and bending motions can be expressed as 
[6]: 
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where ZR and θ represent rail vertical and rotational mo-
tions; k is the shear coefficient of rail; A is the cross-
sectional area of the rail and G is the shear modulus of the 
rail material; EI represents the flexural rigidity of the rail. 
δ function represents the position of vertical forces on the 
rail and converts the concentrated forces into distributed 
forces. Subscript i refers to ith sleeper, and notation l(r) 
refers to left (right) side rail. m  is rail mass of unit length. 
r is the radius of gyration of rail cross-section. Pa is longi-
tudinal force applied on the rail which is neglected in this 
study.  

As shown in Figure 8, the sleepers are model as 
lumped masses. A set of springs and dampers represent the 
compliance of the ballast. The lateral distance between two 
rail supports is Ls. The vertical displacement Zis and roll 
displacement φis of ith sleeper due to rail pad force {Fs} are 
derived from the following differential equation: 

[ ]{ } [ ]{ } [ ]{ } { }T
sssssss FdKdCdM =++ &&&                        (25) 

where [Ms], [Cs] and [Ks] are the mass, damping and 
stiffness matrices; {ds} is the displacement vector. The 
detailed derivation of the equations is presented in [7]. 

4 Simulation Results 

Coupled vehicle-track system model developed in the pre-
vious section considered the rail as continuous system, 
while the vehicle and sleeper components are modeled by 
discrete or lumped parameter systems. Mathematically, the 
model is represented by a set of coupled ordinary (ODE) 
and partial differential equations (PDE). It is essential to 
explore an effective method for analysis of coupled partial 
and ordinary differential equations with sufficient accuracy 
and stability of the solution. In this study, a central finite 
difference method (CFDM) is applied to solve for partial 
and ordinary differential equations [7].  

In this study, a nominal wheel flat is defined as 100 
mm long and 1.5 mm deep. This flat is introduced only to 
the left wheel, while the right wheel is assumed to have a 
perfect profile. The vehicle and track parameters listed in 
Table 1 and the above flat size are selected to facilitate a 
direct comparison of results with those available in the 
literature. Simulations are carried out for track length cor-
responding to 50 sleepers and results are presented for a 
time segment where any effect of boundary conditions is 
absent. Figure 10 illustrates a segment of the time history 
of wheel-rail contact force at the left and right wheel-rail 
interface for a forward speed of 70 km/h. 

When the flat on left wheel comes into contact, the 
contact force reduces due to loss of contact as the left 
wheel suddenly drops while the left rail moves up until the 
wheel hits the rail. Thus an impact force is produced. As 
shown in Figure 10, there is a total loss of contact at the 
left wheel for the speed and flat size considered. After the 
impact, the contact force oscillates for about a cycle prior 
to dissipating due to the damping. Figure 10 further shows 
that the contact force at the right wheel-rail interface also 
varies in a similar manner. The magnitude in this case, 
however, is much smaller and takes places with a time 
delay in relation to the left wheel. For the speed and flat 
size considered, the impact force at the left wheel with flat 
is found to be more than 3.5 times the static load, whereas 
the peak force at the other side is about 1.5 times the static 
wheel load. 

In order to examine the impact sequence in terms of 
wheel and rail motions, the time history of wheel and rail 
displacements is presented in Figure 11. The results show 
the change of wheel and rail movement at the left and right 
track as the vehicle runs along the track. When the flat on 
left wheel comes into the contact region, the left rail 
moves up and wheel drops down prior to impact between 
wheel and rail. After impact, the left wheel and rail oscil-

Xw X 

Z

Pc 

F2 F3 Fi- Fi Fn-1 

a

F1 Fn 

L

Figure 8: Schematic of the two-layer 3D track system 
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zb 

Figure 7: Six-DOF roll-plane vehicle model 

Figure 9: Model of rail supported by sleepers (fixed end) 
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late around their individual static position for a short dura-
tion. Meanwhile, at the right side, both rail and wheel 
move up at first to compensate for the roll motion of the 
axle as left wheel drops due to the flat. The resulting oscil-
lating motions of the rail and wheel at the right side yield 
the variation in the contact force at that wheel. 

Table 1: Parameters of vehicle and track system [8] 

 
 
 
 
 

 
 
 

4.1 Comparison with Hertzian Contact Model  

The most widely used contact theory for vertical wheel-rail 
contact force simulation is the Hertzian contact model. 
One of the motivations for the present investigation was to 
introduce a new radial spring adaptive contact model that 
can accommodate asymmetric contact region for defective 
wheel profile. In order to compare the developed model in 
application to wheel flat, the vehicle-track system model 
incorporating Hertzian contact model and the developed 
adaptive contact model are simulated for identical parame-
ters. A common value in literature used for Hertzian con-
tact coefficient is cH = 0.85x1011 for Hertzian contact 
model, while the radial spring stiffness of the adaptive 
model is selected such that both models yield identical 
static contact force. 

The simulation is carried out for a 100 mm long and 
1.5 mm deep flat at a speed of 70 km/h. The contact force 
result for one steady-state impact cycle is shown in Figure 
12. As the results show, the impact force from Hertzian 
contact model (558.0 kN) is significantly larger than that 
from adaptive model (404.7 kN). The impact force pre-
dicted by adaptive contact model is therefore 27.5% less 
than that from Hertzian contact model at 70 km/h for given 
parameters. The results in Figure 12 further show that the 

Vehicle System  

Car body mass (quarter of vehicle) 20150 kg 

Bolster mass (half) 232.5 kg 
Mass moment of inertia of bolster 
about centerline of track (half)          87.5 kg.m2 

Mass of half side frame (half)                  223.75 kg 

Mass of wheelsets       1120 kg 
Mass moment of inertia of wheelset 
about centerline of track       420.1 kg.m2 

Primary suspension stiffness  6.5 MN/m 
Primary suspension damping coeffi-
cient       100 kN.s/m 

Secondary suspension stiffness        2.55 MN/m 
Secondary suspension damping coeffi-
cient       44.24 kN.s/m 

Distance between left and right secon-
dary suspension in bogie 1.6002 m 

Distance between left and right wheel 
bearing center 1.6002 m 

Wheel radius  0.475 m 

Track System  

Shear coefficient         0.34 

Rail cross section area        7.77×10-3m2 

Shear modulus of rail       81GN/m2 

Elastic modulus of rail 2.07×1011 
N/m 

Second moment of area of rail about Y 
axis 2.94×10-5 m4 

Rail mass per meter  60 kg/m 

Pad stiffness  140 MN/m 

Pad damping coefficient 45 kN/m 

Ballast stiffness (*)  40 MN/m 

Ballast damping coefficient (*)               50 kN.s/m 

Sleeper mass  270 kg 

Mass moment of inertia of sleeper        90 kg.m2 

Sleeper spacing 0.685 m 

Rail support distance (*) 1.505 m 

Radial spring stiffness 3.3443×1010 

N/m/radian 
Note: The parameters with(*) are not given by reference 
[8] and assumed according to typical freight car[3] 

Figure 10:  Contact force time history in the 
proximity of wheel flat contact 

Figure 11:  Time history of wheel-rail displacement  
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Hertzian contact model predicts the loss of contact of 
wheel-rail second time after the impact, and the duration of 
the second loss of contact is even larger than the first one, 
which is unlikely in practice.  

In order to examine the effect of speed, the peak im-
pact load due to the same flat within the speed range 0 ~ 
180 km/h is plotted in Figure 13. As the results show, both 
models predict similar trend for change in speed. However, 
in comparison to adaptive contact model, Hertzian contact 
model underestimates wheel-rail impact load at low speeds, 
and overestimates the impact load at high speeds. Such a 
trend for the performance of adaptive contact model is 
very encouraging since it is well known in the literature 
that for simulation of impact force due to wheel flat, 
Hertzian contact model may underestimate at low speeds 
while may overestimate at high speeds. Another noticeable 
difference between the two contact models as shown in 
Figure 13 is the fact that beyond 90km/h, the peak impact 
force predicted by Hertzian contact model reduces consid-
erably as speed is increased, whereas the adaptive contact 
model exhibits very small reduction with increasing speed. 
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4.2 Comparison with Published Field Test 
Data  

In order to investigate the influence of wheel flat on the 
dynamic wheel-rail contact force, the Centre of Excellence 
CHARMEC (CHAlmers Railway MEChanics) carried out 

extensive field measurements in Svealandsbanan, Sweden 
on the main line between Eskilstuna and Sodertalje in co-
operation with Chalmers University of Technology in 
2000 [9]. The response of wheel-rail contact force due to a 
100 mm long, 0.9 mm deep wheel flat was measured at 
different traveling speed.  

The wheel rail contact force was measured utilizing an 
instrumented sleeper bay over which a bogie with a flat 
wheel was moved at different speeds. A sample of experi-
mental time history of impact force at 50 km/h is shown in 
Figure 14. As the result shows, the wheel-rail contact force 
recorded is zero except when the wheel is on the instru-
mented sleeper bay. The impact sequence can be clearly 
identified from the result. As the wheel flat approaches 
contact region, there is an initial drop in the contact force 
from the static value. This is followed by a relatively sharp 
peak force referred to as the impact force. Finally the im-
pact force is followed by a damped oscillation of the con-
tact force as the wheel travels away from the instrumented 
bay. The second increase in Figure 14 corresponds to rear 
wheel with perfect profile entering the instrumented bay.  

The experimental vehicle and track parameters and 
description of wheel flat (100 mm long and 0.9 mm deep) 
are also simulated using the developed model for this in-
vestigation. Majority of the parameters are obtained from 
reported studies by Anderson and Oscarsson [10] and by 
Nielsen and Oscarsson [2]. They also carried out numeri-
cal simulation of wheel-rail impact force response due to 
such wheel flat to compare with experimental results in [9]. 
The time history of the contact force from the current 
study is presented in Figure 15. The result for 50 km/h 
shows very good agreement with the field test result pre-
sented in Figure 14. The peak contact force (215 kN) and 
the trend predicted from this simulation is very similar to 
the peak (211 kN) and trend observed in the field test. 

 

 

The simulated peak contact or the impact load for the same 
parameters is evaluated for speed in the range of 5 to 100 
km/h. These results are presented in Figure 16 along with 
experimental result from [9]. Figure 16 further presents the 
numerical results obtained in [2, 10] for Hertzian nonlinear 
contact model along with single wheel vehicle model, and 
linear and nonlinear track model. Although some experi-
mental results are scattered, it is easy to see that the pre-
sent vehicle-track model with adaptive contact model 

Figure 12:  Comparison of contact force from 
adaptive and Hertzian contact model 

Figure 13:  Comparison of wheel-rail impact load at 
different forward speeds  

Figure 14:  Time history of wheel rail contact force meas-
ured in one instrumented sleeper bay at 50 km/h [16]  
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shows closest trend to the experiment among all the results 
presented in Figure 16. Particularly, the effectiveness of 
the adaptive contact model as opposed to Hertzian model 
at high speed is highly significant. 

 

 
 

It is also apparent that the simulated results obtained 
in this investigation tend to predict the upper bounds of 
experimentally observed impact loads for speeds beyond 
40 km/h. From the influence of nonlinearity in the track 
system [2] as shown in Figure 16, it is possible that the 
present model with track system nonlinearity may produce 
even a better agreement with the experimental values over 
the entire speed range. 

 

 

5 Conclusions 

Unlike the single or multiple point contact models, the 
proposed adaptive contact model is based on continuous 
wheel-rail contact in the contact patch, and accounts for 
asymmetry of the patch and partial contact as the flat en-
ters and leaves the contact region.    

The response of the vehicle-track system in terms of 
contact force is examined for two different flat sizes at 
various forward speeds. Results are compared with re-
ported experimental and computational data in time do-
main and in terms of peak impact force at different speeds. 

The results demonstrate that adaptive contact model is 
more realistic for accurate representation of the contact 
between wheel and rail. The comparative study shows that 
the proposed model, although simplified in terms of vehi-
cle and track systems, can predict wheel-rail impact load 
better than nonlinear Hertzian point contact model. This 
study also shows that wheel flat can cause wheel-rail im-
pact load not only between the defective wheel and rail, 
but also between the rail and cross wheel. Further studies 
are proposed with nonlinear track model, and for estab-
lishment of accurate radial spring stiffness for adaptive 
contact model. 
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