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Abstract                                                                                    

                                                                                           

This paper presents methodologies for kinematic/dynamic 
modeling and trajectory tracking for a  four wheeled 
nonholonomic mobile robot. The vehicle with two front 
(steering) and two rear (driving) wheels is considered.  The 
complete dynamic model of such  a wheeled mobile robot 
is established using the Euler’s Lagrange equation and 
MATHEMATICA. Then a dynamical extension that makes 
possible the integration of a kinematic controller and a 
torque controller is presented .A combined 
kinematic/torque control law is developed using 
backstepping approach and asymptotic stability is 
guaranteed by Lyapunov theory. The mobile robot is 
modeled as a non holonomic system subject to pure rolling, 
no side slipping constraints. Simulation results are 
performed to illustrate the efficacy of the proposed control 
strategy. 
 
Key words: mobile robot, backstepping control, 
nonholonomic systems, trajectory tracking, Lyapunov 
stability. 
                                                                              

1    Introduction 

 
There is a wide literature concerning control of 
nonholonomic mobile robots published in last fifteen years. 
A mobile robot is one of the well known system with 
nonholonomic constraints and there are many works on its 
tracking control . 
The majority of research effort in the literature has 
concentrated on the use of kinematic model of the vehicle 
(where the velocities are the inputs),and less research has 
been done to solve the problem of integrating the 
nonholonomic kinematic controller with the dynamics of 
the systems. These mobile robots have applications in 
industrial, household, military, security, space and office 
automation.  For nonholonomic systems such as mobile 
robots their kinematic constraints make time derivative of 
some configuration variables nonintegrable (Xiaoping, Y. 
&  Yamamoto,Y., 1996). Due to the appearance of the 
nonholonomic constraints the motion planning and the 

tracking control of mobile robots are difficult to be 
managed. In the phase of motion planning (Wilson, D. E., 
and Luciano, E. C., 2002) a suitable trajectory is designed 
to connect the initial posture (i.e. the position and 
orientation of the robot) and the final one such that no 
collisions with obstacles would occur and kinematics 
constraints are satisfied. In this paper we study the 
kinematics and dynamics  of the  nonholonomic systems 
such that every path can be followed efficiently.Several 
control solutions for trajectory tracking for mobile robots 
have been proposed,as for example, Lyapunov direct 
method (Kanayama et al., 1990; Samson, 1993).The idea 
of input-output linearization was further explored by 
(Oelen, W. & Amerongen ,J., 1994) for a two degree of 
freedom mobile robot. The class of nonholonomic system 
in chained form was introduced by  (Murray, R. M., & 
Sastry, S. S.,1993) and has been studied as a bench mark 
example by several authors. It is well known that many 
mechanical system with nonholonomic constraints can be 
locally or globally, converted to chained form under    
coordinate change and state feedback. Interesting examples 
of such mechanical systems include tricycle-type mobile 
robots, cars towing several trailers, the knife edge(Murray, 
R. M., & Sastry, S. S., 1993), (Kolmanovsky, I. & 
McClamroch, N. H. ,1995). Trajectory planning algorithm 
for a four-wheel-steering (4WS) vehicle based on vehicle 
kinematics was introduced by (Danwei, W. & Feng, Q., 
2001). A new analytical solution to mobile robot trajectory 
generation in the presence of moving obstacles for a four 
wheel mobile robot based on its kinematics was introduced 
by Zhibua, Q., Wang, J. &Clinton, E. P., 2004).Trajectory 
tracking control of tri-wheeled mobile robots in skew 
chained form system was introduced by(Tsai, P. S., Wang, 
L. S., & Chang, F. R., 2006).  
In this paper a feedback  velocity following  control law is 
designed such that the mobile robot velocities converge  
asymptotically to the given velocity inputs. Finally this 
second control signal is used by the computed – torque 
feedback controller to compute the required torques for the 
actual mobile robots. Although several approaches using 
the lagrange’s equation of motion with multipliers have 
been proposed in modeling of mobile robots, their 
derivation procedures of finding dynamic models are too 
complicated and time consuming. To circumvent the 
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difficulty ,this paper contributes a direct system modeling 
approach for the four wheel nonholonomic mobile robot 
through the use of the commercial package  
MATHEMATICA. By virtue of the advantages of the 
symbolic computation in MATHEMATICA the dynamic 
model of the four wheeled nonholonomic mobile robot can 
be easily developed and then   represented in a state space 
form. With the proposed nonlinear tracking control law, 
the entire state of the system to asymptotically track to the 
desired trajectory is definitely ensured. 
 

2    System Modelling 

 
This section presents the complete governing equation of 
the four wheel mobile robot system, investigates the 
structural properties of the derived models and validates 
the developed model in comparison with other’s well 
known work. 
 

2.1   System Description 

 
Consider the four wheeled mobile robot  as shown in figure 
1. The mobile robot under consideration has  two rear 
driving wheels driven independently by two DC 
servomotors and the front two steering wheels. 
To simplify the modeling derivation of the wheeled mobile 
robot under consideration the following assumption are 
made. 
 (1) The wheeled mobile robot is built from rigid 
mechanism . 
(2) There is zero or one steering link per wheel. 
(3) All steering axes are perpendicular to the surface of  
      motion . 
(4) The surface is a smooth plane. 
(5) No slip occurs between the wheel and the floor. 
The following notation will be used in the formulation of  
the constraint equations and the motion equations of the 
wheeled mobile robot. 

oP             the centre of the mobile plateform. 
 c              distance between the front wheel axle and the 
                 plateform centre of gravity oP . 
  d             the distance between the rear wheel axle and 
                 platform centre of gravity oP . 
  2b           the wheel span. 
  r              the radius of each wheel. 
 cm            the mass of the plateform without the driving  
                 Wheels and the rotors of the DC  motors. 
 wm           the mass of each driving wheel with its motor. 
 cI             the moment of inertia of the plateform  
                 without the  driving wheels and the motors   
                 about a vertical axis through oP . 

mI             the moment of inertia of each wheel about 
                 the wheel axis. 
 

wI               the moment of inertia of each wheel about  
                   the wheel diameter. 
 

3   Kinematics of the mobile robot 

 
The four wheel mobile robot considered in this paper is 
shown in fig.1,    its front wheels are steering wheels, and 
its rear wheels are   driving wheels. The distance between 
the front wheel axle and plateform centre of gravity is c 
and distance between the rear wheel axle and plateform 
centre of gravity   is d and 2b is the wheel span.The 
trajectory planning will be done for the plateform centre of 
gravity. Let the generalized co-ordinates be 

0 0 0[ , , , ]= Tq x y φ φ , where 
0 0

( , )x y  are the cartesian 
coordinates of the centre of gravity of the mobile plateform 
with respect to co-ordinate frame { }U . The four wheels are 
located at , ,1 2 3p p p  and 4p on the mobile platform 

respectively and cp  is the centre of the mobile platform. 
Six co-ordinate frames are defined for describing position 
and orientation of the mobile robot - {1} is the frame fixed 
on wheel 1 with 1x  - axis is chosen to be along the 
horizontal   radial direction   and 1y  axis   in the lateral 
direction .Likewise {2},{3} and {4} are the frame defined 
for the wheel 2, 3 and 4 respectively and {0} is the frame 
defined at point cp . The orientation of the vehicle body is 

characterized by 0φ  which is the angle from Ux  to  0x  . 1φ  
and 2φ  are the front two steering angle and φ  is 
considered as a virtual steering angle of a virtual wheel 
which is at the middle point of the front two steering 
wheels i.e. the angle at which the whole plateform changes 
the orientation due to steering angles 1φ  and 2φ  of the front 
two steering wheels. 

 

 
Figure 1: Four wheel mobile robot and co-ordinate frame 
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Figure 2: Velocities of wheels 
 
To develop the kinematic model of the wheeled mobile 
robot ,the ith wheel is considered as rotating with angular 
velocity &

iθ  where , 1,2,3,4.=&
i iθ denotes the angular 

velocities for each wheel. It is assumed that wheels roll on 
the  plane u ux y  without longitudinal and transversal 
slippage.  
Formally, last statement in mathematical terms can be 
written as follows 

( ) 0 (1)=&A q q  
where  

0 1 0 1 1 1

0 2 0 2 2 2

0 0

0 1 0 1 1 1

0 2 0 2 2 2

0 0

0 0

( )
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where 0 0 0 1 2 3 4[ , , , , , , , ]= Tq x y φ θ θ θ θ φ  is a vector of 
generalised co-ordinates. 
Now  using   the  fact  that  wheel  axes  must    intersect at a  
point when the mobile robot  turns. Thus we get  

1
( ) tantan

( ) tan
+

=
+ −
c d

c d b
φφ
φ

 

 and                              2
( ) tantan

( ) tan
+

=
+ +
c d

c d b
φφ
φ

 

Constraint   given   by   Eq. (1)    imply   that   there  exists 
matrix ( )s q , which is  full rank  and  consists  of     linearly  
independent  vector  fields  which are  spanned on  the null 
space of matrix ( )A q , namely 

11 21 31 41 51 61 71 81( )
0 0 0 0 0 0 0 1

TS S S S S S S S
s q ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

where  

11 0 0

21 0 0
2 2 2

31 2

2

( ) cos sin
cos ( ) cot sin

2 ( ) cot 2 cos ( 2( ) )S
( )( tan ) 1

( ( ) cot )

= + −

= + +

− + + − + +
=

+
+ − +

− +

S c d d
S d c d

b c d b ec b c d
c dr c d b

b c d

φ φ
φ φ φ

φ φ

φ
φ

 

2

41 2

2

( ) cos sec (2( ) tan )
( )( tan ) 1

( ( )cot )

+ + + +
=

+
+ + +

+ +

c d ec b c d bS
c dr c d b

b c d

φ φ φ

φ
φ

 

51
( )cot− + +

=
b c dS

r
φ  

61
( )cot+ +

=
b c dS

r
φ  

71 811, 0= =S S  
It       is     straight  forward to   verify   that      A(q)s(q) 0= . 
Since the constrained  velocity is always in the null space of   
space of ( )A q ,there exists a pseudo velocity vector v(t)  
such that  

                              ( ) ( )=&q s q v t                                       (2) 
Where  n   is   the   dimension   of   vector q and m is the total  
Number  of   holonomic   and    nonholonomic      constraints  
imposed on  the system. 
Define        

0 0 0

0 0 0

cos sin

sin cos

= −

= +

&

&

x y

x y

x v v

y v v

φ φ

φ φ
 

where xv and  yv  are the velocities   of the  centre of gravity 
 of  the mobile plateform along the x and y-axes respectively. 
 Thus we get 
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              Since  the   control   objective  for   the  robot  is to ensure 
              that ( )q t tracks a  reference   position and    orientation   
              denoted by  
                                       0( ) [ ( ), ( ), ( )]=d d d dq t x t y t tφ   
               we consider only 
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where   1 = xv v  and  2 = &v φ  

4     Dynamic Model 

In this section we describe dynamics of the vehicle 
presented in Fig.(1). In general the dynamical model of a 
mobile robot is given by 

T
zM(q)q V(q,q) G(q) E(q) A (q)+ + + τ = τ − λ&& &               (4) 

where M(q) is a symmetric, positive definite matrix, V is a 
centripetal and Coriolis matrix ,F is a friction vector, G is a 
gravity vector, dτ is a vector of disturbances including 
unmodeled dynamics, E is an input transformation 
matrix, τ is a control input vector, A is a matrix associated 
with constraints, λ is a vector of constraint forces ,and 
q& and q&&  denote velocity and acceleration vectors, 
respectively. Since in our case robot moves on a plane 
vector G=0.    
It would be more suitable to express the dynamic equations 
of motion in terms of quasi  velocities 1v and 2v .By 
differentiating equation (2) with respect to time we get  
              q S(q)v S(q)v= + &&& &                                                (5)    
Next we substitute Eqs. (2) and (5) into equation (4) and 
multiply the resulting equation on the left hand side by 
matrix Ts (q) .  After some not complicated calculations we 
get  

( )

.

, ( )

T T T

T T

T

S MSv S MSv V S E

i e Mv V

where M S MS V S MSv V

S E

τ

τ

τ τ

+ + =

+ =

= = +

=

&&

&

&
                        (6)                              

τ  is a set of three moments T
r l s[ , , ]τ τ τ  in which two 

moments T
r l[ , ]τ τ are acting at the wheels   and one 

moment sτ  for steering . The matrix ( )M q   is  which 
appears in equation (6)  is positive definite. The matrix 

2−M V   is  a skew  symmetric matrix. 
The Lagrange  formulation is used to derive the dynamic 
equation of motion of  the  mobile robot.In this case there 
is no gravity term in dynamic  equation because the  
trajectory of the mobile  base is constrained to the 
horizontal plane, i.e.  Since the system can not change its 
vertical position , its potential energy U remains constant. 
The kinetic energy of the main vehicle body i.e. the mobile 
plateform is 

                       2 2 2
0 0 0

1 1( )
2 2

= + + && &plateform c cK m x y I φ  

and  the kinetic energy of the four wheels are 
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The total kinetic energy of the four wheeled mobile robot 
is given by 

 
2 2 2 2 2
0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 1 2 0

1 1( ) [2{ ( ) ( cos sin )}
2 2
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Since there is no potential energy involved in this case, the 
Lagrangian of the system is given by 
      L = Kplatform + Kwheel 1+ Kwheel 2+ Kwheel 3 
            +Kwheel 4=K 
The equation of motion is obtained by applying the Euler 
Lagrange’s equation  

( )⎛ ⎞∂ ∂
− = −⎜ ⎟∂ ∂⎝ ⎠&

Td L L A q
dt q q

τ λ  

The dynamic equation of the four wheeled mobile robot 
with the lagrangian multipliers  

1 2 3 4 5 6 7, , , , , ,λ λ λ λ λ λ λ  
are given  by 
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  where 
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The above dynamic equation of motion for the four wheel 
nonholonomic mobile robot can be written in the form  

( ) ( , ) ( ) ( )+ = −&& & TM q q C q q E q A qτ λ  
where 
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and the constraint matrix is given by (1). 

5   Chained form of kinematic model 

Using the following change of co-ordinates 
1 0 0

2 3
0

3 0

4 0 0

c o s
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φ

 

the kinematic model  (3) can be transformed in the 
following  chained form 

                              
1 1

2 2
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4 3 1
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=
=
=

&
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x u
x u
x x u
x x u

                               (15) 

 with two input transformations                               
1

1
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u
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3 20

2 1 0 22
0

3 s in s in
( ) c o s c o s

( ) c o s
v u c d u

c d
φ φ

φ φ
φ

−
= + +

+
 

above is the two input four state chained form where  
1 2 3 4( , , , )=x x x x x  is the state and 1u and 2u are the two 

control inputs. 
 

5.1     Reference trajectory generation 

Assuming  that  the  reference  state trajectory and 
reference input trajectory for the four wheel mobile robot 

be  
0 0 0

1 2

( ) ( ( ) , ( ) , ( ) , ( ) )
( ) ( ( ) , ( ) )

=

=
d d d d d

d d d

q t x t y t t t
V t V t V t

φ φ
 

 
The desired trajectory is feasible only when it satisfies the 
nonholonomic  constraints  on the system.  

 Given any boundary conditions  
0 1 2 3 4( ) [ (0), (0), (0), (0)]=x t x x x x  

  and 

1 2 3 4( ) [ , , , ]= T
d d d d dx t x x x x   for  some  0 > dt t . 

 
   There exists inputs 1v and 2v that gives a feasible 
   trajectory of  functional form 

4 1( )=x F x  
 
 Satisfying the following boundary conditions  

4 1 4 1(0) [ (0)], [ ( )]= =dx F x x F x d  
 

1 1
3 3

1 1
2 2

1 1
2 22 2

1 1

( (0)) ( ( ))(0) , ( )
(0) ( )
( (0)) ( ( ))(0) , ( )

(0) ( )

= =

= =

dF x dF x dx x d
dx dx d

d F x d F x dx x d
dx dx d

 

Since there are six boundary condition .So minimum 
order of polynomial type feasible trajectory is five. So 
we assume that 

4 1
2 3 4 5

0 1 1 2 1 3 1 4 1 5 1

( )=
= + + + + +

x F x
a a x a x a x a x a x  

6    Design of tracking controller  

Denote the tracking error as e dx x x= − .The error 
differential equation are  

1 1 1

2 2 2

3 2 1 2 1 1

4 3 1 3 1 1

( )
( )

= −
= −
= + −
= + −

&

&

&

&

e d

e d

e e d d

e e d d

x u u
x u u
x x u x u u
x x u x u u

                                         (16) 

The goal is to find a time-varying controller, 

%1
1 2

2

( , , )
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

e d d

u
u u x u u

u
 

such that the tracking error ex converges to zero 
asymptotically, i.e. lim 0

→∞
− =dt

x x under appropriate 

conditions on the reference control functions  1du and     
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2du and initial tracking errors (0)ex , with a good choice of 
λ .    
We first introduce a change  of  coordinates and   rearrange  
system (16) into a triangular –like form so that the 
integrator backstepping   can be applied. 
Denote % 2 3( , )=d d dx x x and let 4 4

1(.; ) : →%dx R Rη be the 
mapping defined by 

(4 1) ( ) ( ) 1

3 2

4 1

( ) , 1 2− + − −= − + ≤ ≤

=

=

i e i e n i d n i e

e

e

x x x x i

x
x

ζ

ζ
ζ

 

In the new coordinates 1 2 3 4( , , , )=ζ ζ ζ ζ ζ  system (16) is 
transformed into 

1 1 2 2 1 1 4

2 1 3 2 4

3 2 2

4 1 1

( )= − −

= −

= −

= −

&

&

&

&

d d

d

d

d

u x u u

u u

u u

u u

ζ ζ ζ

ζ ζ ζ

ζ

ζ

                             (17)  

Consider the 1ζ − subsystem of (17)  

1 1 2 2 1 1 4( ) (18)= − −&
d du x u uζ ζ ζ  

 
We consider the variable 2ζ as virtual control input and the 

variable 1du  and 4ζ  as time varying functions. 

Denote 1 1=ζ ζ . Differentiating the function 
2

1 1
1
2

=V ζ along the solution of (17) yields 

1 1 1 2 2 1 1 1 4( ) (19)= − −&
d dV u x u uζ ζ ζ ζ  

Observe that 1 1( ) 0=α ζ is a stabilizing function for system 
(7) whenever 4 0=ζ . 

Define 2 2 1 1( )= −ζ ζ α ζ  
Differentiating the function  

2 2 2

2 1 2 1 2
1 1 1
2 2 2

= + = +V V ζ ζ ζ  

along the solution of (6) yields 

2 1 2 3 2 1 1 1 4 2 2 4( )= − − −&
d dV u x u u uζ ζ ζ ζ ζ ζ  

As 

2 2 1 1
. . .

1
122

1
.

2 1 3 2 4

1 3 2 4 1 1 1 1

1 3 1 2 4 1 1

1 3 2 2 4 1 1

( )

( )
( )

= −
∂

= −
∂

= = −
= − + −
= + − −
= − − −

d

d d d

d d

d d

u u
u u u u
u u u
u u u

ζζ

ζ ζ α ζ
αζ
ζ

ζ ζ ζ
ζ ζ ζ ζ
ζ ζ ζ ζ
ζ α ζ ζ

 

where 
2 1 2 1( , ) = −α ζ ζ ζ  

Again define 

3 3 2 1 2
. . . .

2 2
1 233

1 2
. .. .

1 13 3

2 2 1 2 2 1 1 4

( , )

( )

( )
( )

= −
∂ ∂

= − +
∂ ∂

= − − = +
= − + − −d d du u u x u u

ζ ζζ

ζ ζ

ζ ζ α ζ ζ
α αζ
ζ ζ

ζ ζ
ζ ζ

 

Consider the positive definite and proper function 
2 2 2 2

3 2 3 1 2 3
1 1 1 1
2 2 2 2

= + = + +V V ζ ζ ζ ζ  

Differentiating the function 3V along the solution of 
(17) yields 

3 3 1 2 2 2 1 2

2 1 2 3 1 1 4 2 2 4

( )
( )( )

= + − +

− + − −

&
d d d

d

V u u u u
x x u u u

ζ ζ ζ
ζ ζ ζ ζ ζ

 

In order to make 3V negative definite we choose the 
following control input              

1 2 2 2 1 2 3 3 (20)+ − + = −d d du u u u cζ ζ ζ
 
where 3 0>c .Thus we have 

2
3 3 3 2 1 2 3 1 1 4 2 2 4( )( )= − − + − −&

dV c x x u u uζ ζ ζ ζ ζ ζ  
 
Finally consider the positive definite and proper function 
which serves as a candidate Lyapunov function for the 
whole system (17)  

2 2 22 2
4 3 4 1 2 3 4

1 1 1
2 2 2 2 2

= + = + + +V V λ λζ ζ ζ ζ ζ  

where 0>λ is a design parameter. 
Differentiating the function 4V along the solution of 
(17) yields 

2
4 3 3 2 1 2 3 1 1 4 2 2 4

4 1 1
2

4 3 3 2 1 2 3 1 1 2 2 4

( )( )
( )

[{ ( )}( ) ]

= − − + − − +
−

= − − − + − −

&

&

d

d

d

V c x x u u u
u u

V c x x u u u

ζ ζ ζ ζ ζ ζ
λζ

ζ λ ζ ζ ζ ζ

 

 
In order to make 4V negative definite we choose the 
following control input 
 

2 1 2 3 1 1 2 2 4 4{ ( )}( ) (21)− + − − =dx x u u u cλ ζ ζ ζ ζ
 

From (9) and (10) we get the following control law 

4 4 2 2
1 1

2 1 2 3

2 2 3 3 1 1 2

(2 )
( ) 2

− +
= +

− +
= − + −

d

d d

c uu u
x x

u u c u

ζ ζ
λ ζ ζ

ζ ζ ζ
 

 

7    Dynamic based controller 

Since S is a full rank  matrix formed by a set of smooth and  
linearly   independent    vector field .we have from 
equation   (6) , the   reduced mass matrix M  is always 
symmetric and positive definite.   
Thus we have  
 

Mv Vτ = +&  
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Now define the backstepping error e as 
 

= − de v v  
 
Selecting the following a Lyapunov candidate function 

1V for the mobile plateform 

1
1
2

= TV e Me  

The time derivative of 1V along the system trajectory is   
.

1
1
2

= +& &T TV e M e e Me  

Since                        
.

( 2 ) 0 0.− = ∀ ≠Tx M C x x  
.

1
1 ( 2 )
2

( )

= − + +

= +
= + +

& &

&

& &

T T T

T T

d

V e M V e e Ve e Me

e Ve e Me
M e v Vτ

        

 
Hence  

1 ( )

( )

= + − −

= − + − −

& &

& &

T
d

T
d d

V e Ve V Mv

e Vv Vv V Mv

τ

τ
 

Choosing the control law as              
Muτ φ= +  

Where                 ,= − + + = −&d dVv Vv V u v keφ  

Then                      1
TV k e Me= −&    

Thus the derivative of  1V is negative definite. Hence the 
system is asymptotically stable.         
                                  

8   Simulation results 

 
  To examine the  effectiveness of the proposed trajectory 
tracking control methodology, the simulation for a four 
wheeled mobile robot were performed in MATLAB and 
MATHEMATICA. The system parameters of the four 
wheel mobile robot were selected as 

            c=1.3m, d=1.4 m, 2b=1.5m, Mc=1000kg , 
            v=10m/s,Ic=795kg 2m , Mw=20kg , r=0.2m , 
            Im=0.20 kg 2m , Iw=0.40 kg 2m . 
We consider the following reference output trajectory 

 ( ) , ( ) sind dx t t y t t= =  with the conditions 

0 0 0

0

(0) 0, (0 ) 0, (0 ) , (0 ) 0, (40) 17
4, (40) 10, (40) , (40) 0 .

4

= = = = =
= = − =

d

d d

x y x
y

πφ φπφ φ
 

  Fig.9 demonstrates the evolution of the norm of the 
tracking error ( )ex t based on the following choice of 
design parameters and initial condition: 

3 4=3,c c 5, (0) (2,0.5,0.5,1.5)exλ = = =  

 
          
          Figure 3: Feasible trajectory      
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                    Figure 4: Tracking error in 1x (t)  

 
 

20 40 60 80 100

-0.015

-0.01

-0.005

0.005

0.01

0.015

 
 

                     Figure 5: Tracking error in 2x (t)  
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                     Figure 6: Tracking error in 3x (t)  
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Figure 7: Tracking error in 4x (t)  

 
 

 
              
                Figure 8: norm of tracking error ( )ex t  
 
 

 
               
                Figure 9: Driving wheel torque sτ    

5      CONCLUSION     

In this paper the nonholonomic constraints and the 
kinematics model of the four wheel (front  steering and 
rear driving) mobile robot under pure rolling and no side 
slipping condition  is derived .Using the change of 
coordinates the system is transformed into chained form 
and then a backstepping based tracking controller is 
derived. Simulation results are presented with two 
examples to illustrate the approach.   
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