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Abstract

This paper is about a linkage consisting of nine bars con-
nected by spherical joints, where the bars form a spatial
hexagon with its main diagonals. Additionally the support-
ing lines of the diagonals have one proper point in common.
This linkage is rigid in general. Wunderlich [1] stated that,
given the lengths of the bars, the computation of possible
configurations (up to isometries) is a problem of degree 25.
By direct computation using resultants it can be shown that
the number of essentially different configurations is at most
21, and that Wunderlich’s result includes four solutions lying
at infinity which are not interesting for practical purposes.
Attempts to find a set of design parameters where all 21 solu-
tions allow real assembling led without exception to at most
10 such solutions. Until now it is not clear if this is already
the maximum. Concerning paradoxical mobility Wunderlich
discussed two mechanisms, a general one and a special case
of it, related to Bricard’s mechanism [2]. Systematic search
for all mobile linkages showed that there is another mobile
one which cannot be derived from the known mechanisms
by specialization.

Keywords: spatial nine-bar linkage, assembly modes, para-
doxical mobility, Bricard mechanism

1 Introduction
In the following we present a complete discussion of a nine-
bar linkage concerning the number of assembly modes and
conditions for paradoxical mobility. The structure consists
of nine bars of given lengths, which are connected by spher-
ical joints, so that they form a spatial hexagon with the di-
agonals connecting opposite vertices. Additionally the sup-
porting lines of the diagonals have to intersect in at least one
proper point, as it can be seen in Fig. (1). The question, how
the joints and the intersection point could be implemented
for practical assembly, is not that easy and will not be an-
swered here.

This linkage is a spatial generalization of a planar link-
age consisting of a planar hexagon and its diagonals con-
nected by revolute joints, where the diagonals need not in-

tersect in one point. This structure had been discussed in
detail by Wunderlich [3] and recently by Walter and Husty
[4]. Paradoxical versions of this linkage have been found by
Dixon [5] and are known as Dixon’s mechanisms.

Dropping the constraint of intersecting diagonals the
spatial linkage would be mobile with three degrees of free-
dom, because there are 12 relevant coordinates and 9 equa-
tions describing the distances. On the other hand from the
condition of intersection it follows that every pair of diago-
nals has to be coplanar, and so there are another three equa-
tions. From this we can conclude that the linkage is rigid in
general.
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Figure 1: The spatial nine-bar linkage with given lengths li
and intersection of diagonals at point S.

Using resultants it can be shown that the number of as-
sembly modes (up to isometries) is at most 21 or 84 respec-
tively, when also all these solutions are taken into account,
which can be generated by reflections. Attempts to find a set
of design parameters where all essentially different solutions
allow real assembling failed. The number of real solutions
never exceeded 10 and until now it is not clear if this is the
maximum number.

As mentioned above the linkage is rigid generally. But
on the other hand if we choose special design parameters the
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structure becomes mobile and we speak about “paradoxical”
mobility. Wunderlich discussed two mechanisms where the
second one can be seen as a special case of the first mecha-
nism. Furthermore the second mechanism has the interesting
property that all spherical joints can be replaced by revolute
joints and the diagonals become redundant. The result is the
well-known Bricard mechanism. Systematic search for con-
ditions where the linkage becomes mobile showed that there
exists another new nontrivial mechanism apart from these
two mechanisms.

The paper is organized as follows. In Section 2 we de-
duce a system of polynomial equations which gives a com-
plete description of the linkage. In Section 3 the system is
solved and remarkably this can be done without specifying
any design parameters. The result is a univariate polyno-
mial of degree 21 with coefficients being polynomials in the
design parameters. Starting with this polynomial all essen-
tially different assembly modes can be computed. After that
we explain the difference to Wunderlich’s result and subse-
quently we look briefly at the case where the intersection S
lies at infinity. Section 4 provides an example where two
solutions lead to real coordinates and Section 5 gives nec-
essary conditions for real solutions and a short description
about the problems we had when we searched for such real
solutions. In Section 6 we describe known mechanisms, the
method how we sought for other mobile linkages and finally
we present a new one.

2 Equations

The design of the linkage is given by the bar lengths li with
0 < li ∈ R, i = 1, . . . ,9, including the information, which
bars meet at which vertex. First of all the following nine
equations describe the Euclidean distances between the ver-
tices where vXY denotes the vector pointing from vertex X
to vertex Y, see also Fig. (1).

‖vB1A1‖
2 = l2

1 ‖vB1A2‖
2 = l2

2 ‖vB1A3‖
2 = l2

3

‖vB2A1‖
2 = l2

4 ‖vB2A2‖
2 = l2

5 ‖vB2A3‖
2 = l2

6 (1)

‖vB3A1‖
2 = l2

7 ‖vB3A2‖
2 = l2

8 ‖vB3A3‖
2 = l2

9

Because all vertices lie on lines through S we describe each
vertex as the sum of S and a multiple of a unit vector Vi.
Additionally we can claim that Vi has the same direction as−−→
AiBi. From this condition it follows that νi > µi.

Ai = S+µiVi Bi = S+νiVi ‖Vi‖= 1 (2)

After simplification of (1), the elimination of scalar products
using the substitutions

ViV j =: ui j (3)

we obtain the following equations:

(µ1−ν1 + l1)(µ1−ν1− l1) = 0 (4)

−2ν1 µ2 u12 +ν1
2 +µ2

2− l22 = 0 (5)

−2ν1 µ3 u13 +ν1
2 +µ3

2− l32 = 0 (6)

−2ν2 µ1 u12 +ν2
2 +µ1

2− l42 = 0 (7)
(µ2−ν2 + l5)(µ2−ν2− l5) = 0 (8)

−2ν2 µ3 u23 +ν2
2 +µ3

2− l62 = 0 (9)

−2ν3 µ1 u13 +ν3
2 +µ1

2− l72 = 0 (10)

−2ν3 µ2 u23 +ν3
2 +µ2

2− l82 = 0 (11)
(µ3−ν3 + l9)(µ3−ν3− l9) = 0 (12)

Due to the fact that the vectors Vi are oriented from Ai to Bi
the second factor in equations (4), (8) and (12) cannot van-
ish. So we can remove these factors and solve the remaining
equations for ν1,ν2,ν3.

ν1 = µ1 + l1 ν2 = µ2 + l5 ν3 = µ3 + l9 (13)

These expressions we use to eliminate ν1,ν2,ν3 in the re-
maining six equations. Finally we have the following system
of equations in the unknowns u12, u13, u23 and µ1, µ2, µ3.

E1 := 2 µ1l1−2 (µ1µ2 +µ2l1)u12 +µ2
1 +µ2

2 + l2
1 − l2

2 = 0

E2 := 2 µ1l1−2 (µ1µ3 +µ3l1)u13 +µ2
1 +µ2

3 + l2
1 − l2

3 = 0

E3 := 2 µ2l5−2 (µ1µ2 +µ1l5)u12 +µ2
1 +µ2

2 + l2
5 − l2

4 = 0

E4 := 2 µ2l5−2 (µ2µ3 +µ3l5)u23 +µ2
2 +µ2

3 + l2
5 − l2

6 = 0

E5 := 2 µ3l9−2 (µ1µ3 +µ1l9)u13 +µ2
1 +µ2

3 + l2
9 − l2

7 = 0

E6 := 2 µ3l9−2 (µ2µ3 +µ2l9)u23 +µ2
2 +µ2

3 + l2
9 − l2

8 = 0

This system is a complete description of the linkage and
especially each of its solutions stands for exactly one
assembly mode (up to spatial isometries).

If we have a solution of this system it is clear how coor-
dinates for all vertices Ai and Bi can be obtained. We can set
for example V1 = (1,0,0) and V2 = (V21,V22,0) to fix an ori-
entation of the linkage. This means that the vertices A1,B1
lie an a line parallel to the x-axis and A2,B2 in a plane par-
allel to the xy-plane. Then we have to solve the following
system to get the remaining 5 coordinates of the vectors.

V21 = u12 V21V31 +V22V32 = u23 V 2
21 +V 2

22 = 1

V31 = u13 V 2
31 +V 2

32 +V 2
33 = 1

In general this system has 4 solutions corresponding to re-
flections on the xy-plane and the xz-plane. Because these
solutions can be given in closed form, we can choose one of
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them, for example

V21 = u12

V22 = −
√

1−u2
12

V31 = u13 (14)

V32 =
u12u13−u23√

1−u2
12

V33 = −

√
1+2u12u13u23−u2

12−u2
13−u2

23

1−u2
12

It has to be mentioned that in the following we will always
talk about essentially different solutions, i.e. the four possi-
ble solutions above are seen as one assembly mode.
Finally equations (13) and an arbitrarily chosen point S are
needed to obtain the coordinates of all vertices Ai and Bi.
For example S = (0,0,0) would be a very good choice.

3 Solving the system
To solve the system of equations E1 - E6 resultants are used,
because each unknown we want to eliminate appears only
in two equations. For details about the method of elimina-
tion using resultants see [7]. All computations will be done
without specifying any design parameters. First we elimi-
nate u12, u13, u23 by computing

P1(µ1,µ2) := Res(E1,E3,u12)
P2(µ1,µ3) := Res(E2,E5,u13) (15)
P3(µ2,µ3) := Res(E4,E6,u23).

where

deg(Pi(µ j,µk)) = deg(Pi(µ j)) = deg(Pi(µk)) = 3.

It is clear that these eliminations can also be done by equat-
ing expressions. The result is the same. It can be verified
easily that the triples (0,0,0) and (−l1,−l5,−l9) are solu-
tions of P1, P2 and P3, because they cause the coefficients of
the eliminated unknowns to vanish. But on the other hand
these triples do not lead to valid solutions anyway. So in
the end we will have to remove these solutions. Next we
eliminate µ1 by computing

T (µ2,µ3) := Res(P1,P2,µ1).

We have

deg(T (µ2,µ3)) = deg(T (µ2)) = deg(T (µ3)) = 9

and T consists of 1278 monomials. The final step is to elim-
inate µ2 to obtain a univariate in µ3. We will use a special
procedure to do this, because attempts to compute the re-
sultant with Maple and Singular failed for reasons of time.
First the resultant of two polynomials of degree 3 resp. 9
is computed in general. We obtain a sum of 1222 monomi-
als. Then each monomial is evaluated with the coefficients

of T (µ2) and P3(µ2) and simplified. Finally we sum up all
these expressions and we obtain the univariate polynomial

R(µ3) = Res(T,P3,µ2).

R is of degree 23 and consists of 2.603.982 monomials.
After removing the factors µ3 and µ3 + l9 which belong
to the two parasitic solutions mentioned above, we get a
univariate polynomial of degree 21 consisting of 2.353.262
monomials where the coefficients are polynomials in the
parameters l1, . . . , l9.

All in all we conclude that for arbitrary bar lengths
the nine-bar linkage has at most 21 essentially different
assembly modes. Wunderlich stated that the computation
of possible configurations is a problem of degree 25 at
most. To get this result he used Bézout’s theorem. And
indeed, the system of equations he dealt with has four
solutions at infinity, which we can disregard however. So
our work can be seen as a verification of Wunderlich’s result.

For these computations we assumed that the intersection
point S must be a proper point. Could it be possible that S
lies at infinity? This would mean that all diagonals have to be
parallel. Using this parallelism a relatively short system of
equations can be set up, where coordinates of vertices are the
unknowns. It can be shown that this case can only happen if
the design parameters fulfil an equation of degree 16, which
can be split into four factors of degree 4. Each vanishing
factor leads to another solution. So, in the worst case one
gets 17 solutions where S is a proper point, using equations
E1 - E6, and another four solutions where S lies at infinity.
This happens for example when we use the following bar
lengths:

l1 =
5
2
, l2 =

1
2

√
310, l3 =

1
2

√
1542, l4 =

√
61, l5 = 3

l6 =
√

497, l7 =
√

129, l8 =
√

257, l9 = 7

4 An example
Now we can compute an example. When we use the follow-
ing design parameters

l1 = 10, l2 = 5, l3 =
√

51, l4 =
4
3

√
10, l5 =

7
3

√
13

l6 =
1
3

√
571, l7 =

5
2

√
3, l8 =

3
2

√
11, l9 =

9
2

√
3

we get 21 different solutions. The values for µ1, µ2, µ3 can
be seen in Table 1, the corresponding values for u12, u13, u23
in Table 2.
We used V1 = (1,0,0) and V2 = (V21,V22,0) to fix an ori-
entation of the linkage. The remaining coordinates of the
vectors V2 and V3 were computed using formulas (14). For
every solution the position of the intersection point S was
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chosen such that A1 = (0,0,0) and B1 = (l1,0,0). For the
coordinates of the vertices A2,B2,A3 and B3 see Tables 3
and 4.

As one can see 17 solutions have real values for the six
parameters and at first one might think that we get 17 real
assembly modes. But to get the coordinates of the vectors
Vi we have to use (14), expressions containing squareroots.
That is the reason why only the first two solutions lead to
real assembly modes, which can be seen in Fig. (2) and Fig.
(3).
The conditions which have to be fulfilled to obtain solutions
for real assembly follow in the next section.

5 Conditions for real assembly
Here we will give a short description of the arising problems
when we search for solutions which lead to real coordinates
of the vertices. According to (2) and (3) the parameters ui j
can be written as

ui j = ViV j =
ViV j

‖Vi‖‖V j‖
= cos(](Vi,V j))

We have the following three necessary conditions for the pa-
rameters u12,u13,u23

1−u2
12 ≥ 0

1−u2
13 ≥ 0

1−u2
23 ≥ 0

But there is another condition which can be taken from (14),
namely

1+2u12u13u23−u2
12−u2

13−u2
23 ≥ 0

If these four conditions are fulfilled we can be sure that we
will get real coordinates using equations (14). It can easily
be verified that only the first two solutions of Table 2 fulfil
them all.
So, to find design parameters where all 21 solutions allow
real assembly we have to make sure that the parameters
µi are real and, moreover, that the resulting parameters ui j
satisfy the conditions above.

First of all a vast number of randomly chosen design
parameter sets was generated and for each of them the so-
lutions were computed. The number of solutions with real
coordinates (up to isometries) varied from 0 to 10. Then it
was tried to increase the number of such solutions by small
perturbations, based on a set of design parameters with 10
real solutions, but this was not successful.
Another attempt to increase the actual maximum number
was to apply the algorithm which Dietmaier [6] used to get
40 real postures of the Stewart-Gough platform. The main
idea of this algorithm is to decrease the distance between
complex solutions until they become a double solution and
then to push them apart in the real domain. This is done by
small changes of the design parameters where the changes
are the solutions of a linear program. Dietmaier mentions
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Figure 2: Real assembly of the first solution.
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Figure 3: Real assembly of the second solution.

that possibly the algorithm becomes stationary. This was the
case which happened here. Starting with a design parameter
set with 8 real assembly modes the number could only be
increased up to 10. Then the algorithm became stationary.
Computations using other parameters are still in progress.
Maybe 10 is the absolute maximum, but this is neither
proven nor rebutted, and the search for this maximum num-
ber is subject to future work.

6 Paradoxical mobile mechanisms
Although the nine-bar linkage at hand is rigid in general nev-
ertheless for special design parameters it becomes mobile.
Such parameters can be described by a set of equations they
have to fulfil.
Because of symmetry there are 12 possible permutations of
the lengths (incl. identity). It follows that if we have one sys-
tem of equations describing a mobile linkage, possibly we
get up to 11 other systems which describe the same type of
mobility. In the following we give only one version of these
systems. Furthermore when we search for mobile mecha-
nisms we will concentrate on mechanisms which allow real
assembling.
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6.1 Wunderlich’s mechanisms

In [1] Wunderlich discussed two mobile linkages. The
first one has diagonals of equal length and additionally the
lengths of opposite sides of the hexagon are equal. So the
first mechanism can be described by the following five con-
ditions:

l5 = l1, l9 = l1

l4 = l2, l7 = l3, l8 = l6 (16)

This system is invariant to all possible permutations of the
lengths and only four lengths can be arbitrarily chosen. If
we substitute lengths fulfilling (16) into equations E1 - E6
it can be shown that the ideal generated by this system of
polynomial equations is now of dimension 1 and the linkage
is mobile with one degree of freedom.
Wunderlich’s second mechanism is a special case of the first
one because it can be generated by adding equations

l7 = l4, l8 = l4, l1 =
√

3 l4

to (16) and we finally have the following eight equations to
describe that mechanism:

l1 =
√

3 l4, l5 =
√

3 l4, l9 =
√

3 l4

l2 = l4, l3 = l4, l6 = l4, l7 = l4, l8 = l4 (17)

Here only one length can be arbitrarily chosen. This mecha-
nism is also mobile with one degree of freedom and it has the
interesting property that all joints can be replaced by revo-
lute joints. Thus all diagonals become redundant and can be
removed. The remaining six-bar mechanism is the Bricard
mechanism which is discussed e.g. in [2]. A proof for this
property can also be found in [1].

6.2 Search for new mechanisms

To find all mobile linkages two cases have to be considered.
In the first case we claim that the number of solutions for
µ1,µ2,µ3 is finite. It follows that for mobility one of the un-
knowns u12,u13,u23 has to have infinitely many solutions.
Regarding equations E1 - E6 this is only possible if the coef-
ficients of one of these unknowns vanish. Further computa-
tions show that this case leads only to trivial mobile linkages,
where vertices coincide and where the mechanism itself con-
sists of two triangles sharing one side.

The second case is the main part of the search. Here
we assume that at least one unknown µi has infinitely many
solutions. It follows immediately from (15) that this has to
hold also for the other two unknowns because all leading
monomials are not mixed. All together we have to search for
design parameters where all three univariate polynomials in
the unknowns µ1,µ2, u3 vanish.

To find out for which lengths those univariate polyno-
mials vanish we do not use the univariate polynomials them-
selves because they are to large. Let us recall how the resul-
tants and the final univariate polynomials can be computed

from equations (15).

T23 := T (µ2,µ3)= Res(P1,P2,µ1)
T13 := T (µ1,µ3)= Res(P1,P3,µ2) (18)
T12 := T (µ1,µ2)= Res(P2,P3,µ3)

R(µ3) := Res(T23,P3,µ2)
R(µ2) := Res(T12,P1,µ1) (19)
R(µ1) := Res(T13,P2,µ3)

So e.g. equation R(µ3) vanishes identically if T23 and P3
have a factor in common. The degrees of these polynomials
are

deg(T23(µ2,µ3)) = 9 deg(P3(µ2,µ3)) = 3

and we can split this task into three different cases.
Either P3 is a factor of T23 or they have a factor of degree 2
resp. 1 in common. Each of these cases can be discussed
now using a general ansatz and comparison of coefficients.
E.g. in the last case this means that we write P3 and T23 as
product of a linear polynomial and a general polynomial of
degree 2 resp. 8. Comparison of coefficients gives a set of
equations containing design parameters and the coefficients
of the two general polynomials. Then these coefficients are
eliminated.

In this way we obtain three systems of equations in the
design parameters. The same procedure can be done with
the two pairs T12 and P1 resp. T13 and P2 and then all combi-
nations can be generated to get 3 ·3 ·3 = 27 systems.

Now each system can be solved. We used factorization
and methods from algebraic geometry to split each system
into smaller systems. All solutions containing equations like
lk = 0 were removed, moreover solutions containing equa-
tions like li = l j + lk + lm, because such an equation means
that the linkage contains a rigid quadrangle from which it
follows that the whole linkage is rigid. After elimination
of solutions describing special cases of others and removal
of solutions which can be generated from others by permu-
tation of the lengths, only two solutions remained. One of
them is Wunderlich’s first mechanism and the second one is
a new one. It is clear that Wunderlich’s second mechanism
did not appear because it is a special case of the first one.

The new mechanism can be described by the following
conditions for the design parameters:

l5 = l1

l7 = l8, l3 = l6, l4 = l2 (20)

One could say that this type of mobility is the most general
one, because we only need four equations to describe it.
Among other things here we have conditions that adjacent
sides of the hexagon have to be of the same length. Such
conditions do not appear in Wunderlich’s first mechanism.
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7 Conclusion
A complete discussion of a nine-bar linkage was given and
the maximum number of possible assembly modes could be
computed. Concerning paradoxical mobility all non-trivial
mobile linkages could be described and especially, a new
mechanism was found.

Subject to future research is the search for the maximum
number of assembly modes with real coordinates. Maybe
methods from algebraic geometry could bring some addi-
tional insight.
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Appendix

Table 1: Solutions for µ1, µ2, µ3

µ1 µ2 µ3

-4.00 -3.61 -5.20
-4.38 -4.24 -5.94

101.32 -94.65 -95.53
12.37 12.82 -21.30
15.52 -19.11 -19.93
-16.80 11.63 -16.29
-1.21 -2.02 -11.13
6.44 6.80 -10.00
-4.21 -8.42 -8.02

-10.01 5.01 -7.83
4.23 -8.42 -7.69
-0.18 -12.46 -3.31
-0.73 -0.95 -2.90
-3.68 -1.72 0.77

-18.30 -17.47 0.91
-9.38 -7.10 6.51
86.02 -81.57 86.19

-12.35 - 0.99 i -2.45 + 0.95 i -3.96 + 0.90 i
-12.35 + 0.99 i -2.45 - 0.95 i -3.96 - 0.90 i
-10.01 - 0.11 i -4.98 + 0.15 i -8.03 - 0.43 i
-10.01 + 0.11 i -4.98 - 0.15 i -8.03 + 0.43 i

Table 2: Solutions for u12, u13, u23

u12 u13 u23

-0.55 -0.19 0.27
-0.52 -0.24 0.22
-1.01 -1.01 1.00
1.12 -0.95 -0.93
-1.02 -0.98 1.05
-0.99 1.18 -0.92
-1.59 -0.77 -0.71
1.30 -0.97 -0.88
-0.81 -0.50 12.24
-0.98 111.50 -0.85
-1.04 -0.96 -25.80
-0.93 -0.87 -1.35
-3.52 -0.81 -0.02
-0.82 -1.08 -1.75
1.20 -1.23 -1.17
-2.92 -1.02 -1.13
-1.01 1.00 -1.01

-1.15 + 0.03 i -1.53 + 0.15 i 0.29 - 0.07 i
-1.15 - 0.03 i -1.53 - 0.15 i 0.29 + 0.07 i
-1.37 + 0.03 i 4.16 - 7.17 i -0.24 - 0.12 i
-1.37 - 0.03 i 4.16 + 7.17 i -0.24 + 0.12 i
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Table 3: Solutions for vertices A2 and B2

A2 B2

(6.00, 3.00, 0.00) (1.33, -4.00, 0.00)
(6.56, 3.63, 0.00) (2.23, -3.58, 0.00)

(-5.53, 14.71 i, 0.00) (-14.05, 13.40 i, 0.00)
(1.93, -6.34 i, 0.00) (11.31, -10.50 i, 0.00)
(3.91, 3.48 i, 0.00) (-4.65, 1.95 i, 0.00)
(5.30, -1.71, 0.00) (-3.02, -2.94, 0.00)
(4.42, 2.49 i, 0.00) (-8.94, -7.88 i, 0.00)
(2.43, -5.68 i, 0.00) (13.39, -12.71 i, 0.00)
(11.07, 4.89, 0.00) (4.22, 0.00, 0.00)
(5.11, -1.06, 0.00) (-3.11, -2.85, 0.00)
(4.50, 2.29 i, 0.00) (-4.22, 0.00, 0.00)
(11.72, 4.69, 0.00) (3.92, 1.52, 0.00)
(4.07, 3.20 i, 0.00) (-25.55, -25.21 i, 0.00)
(5.10, 0.97, 0.00) (-1.84, -3.80, 0.00)

(-2.74, 11.71 i, 0.00) (7.39, 6.07 i, 0.00)
(30.10, 19.47 i, 0.00) (5.54, -3.60 i, 0.00)
(-3.49, 12.53 i, 0.00) (-12.01, 11.24 i, 0.00)

(15.13 - 0.18 i, 0.70 + 1.33 i, 0.00) (5.46 + 0.10 i, 0.15 - 3.47 i, 0.00)
(15.13 + 0.18 i, 0.70 - 1.33 i, 0.00) (5.46 - 0.10 i, 0.15 + 3.47 i, 0.00)
(16.83 - 0.24 i, 0.35 + 4.66 i, 0.00) (5.30, -3.22 i, 0.00)
(16.83 + 0.24 i, 0.35 - 4.66 i, 0.00) (5.30, 3.22 i, 0.00)

Table 4: Solutions for vertices A3 and B3

A3 B3

(5.00, 1.00, 5.00) (3.50, -0.50, -2.50)
(5.80, 0.64, 5.74) (3.94, -0.20, -1.79)

(-4.90, 12.32 i, 4.35 i) (-12.77, 11.32 i, 3.99 i)
(7.81, -5.49 i, 8.74) (0.42, -3.48 i, 5.54)
(4.03, -5.98 i, 7.15) (-3.61, -3.64 i, 4.35)

(-2.36, 26.53, 28.38 i) (6.81, 13.83, 14.81 i)
(9.75, 17.42 i, 18.82) (3.77, 5.22 i, 5.63)
(3.27, -4.60 i, 5.18) (-4.30, -1.01 i, 1.14)

(8.26, 163.38, 163.23 i) (4.33, 4.60, 4.56 i)
(-863.16, 3984.81, 4079.38 i) (5.90, 19.00, 19.27 i)

(3.17, 758.62 i, 758.62) (-4.33, -10.46 i, -10.40)
(3.05, -18.90, 18.83 i) (-3.71, 25.63, -25.52 i)

(3.07, 2.45 i, 2.99) (-3.22, -4.14 i, -5.06)
(2.85, 3.58, -3.59 i) (-5.57, 39.90, -40.05 i)

(17.17, 0.42 i, -0.50 i) (7.59, 4.02 i, -4.76 i)
(2.74, -9.76 i, -9.67) (-5.22, -21.45 i, -21.25)
(0.40, 3.42 i, -5.02 i) (8.22, 3.73 i, -5.47 i)

(18.26 - 0.98 i, 2.21 + 10.16 i, 9.19 - 1.56 i) (6.35 + 0.20 i, 2.38 - 9.81 i, -8.69 - 2.54 i)
(18.26 + 0.98 i, 2.21 - 10.16 i, 9.19 + 1.56 i) (6.35 - 0.20 i, 2.38 + 9.81 i, -8.69 + 2.54 i)

(-26.44 + 55.93 i, -81.54 - 53.23 i, 38.99 - 59.03 i) (5.95 + 0.04 i, 0.11 - 5.94 i, 4.31 + 0.10 i)
(-26.44 - 55.93 i, -81.54 + 53.23 i, 38.99 + 59.03 i) (5.95 - 0.04 i, 0.11 + 5.94 i, 4.31 - 0.10 i)
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