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Abstract

Engineering incredibly complex systems at the micron
and sub-micron scales is a new fascination of this cen-
tury. With increasing application possibilities fast and
accurate simulations of such systems are a prime con-
cern for saving time and expenditure involved in design,
fabrication and testing. Simulating systems at this level
open up very exciting avenues of research particularly
due to the confluence of multiple domain physics. The
present paper explores some of the exciting advances in
the area of simulation of micron level devices and an ex-
ample of the dynamics of a coupled electro-mechanical
system using a coupled FEM-BEM approach.
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1 Introduction
The state of the art of microelectromechanical systems is
poised for a great leap forward in the coming decade with in-
creasingly better control and understanding of multi-physics
interaction at the micron and submicron level. Devices like
microfuel cells, digital micromirror displays (DMD), micro-
motors, radio frequency switches and efficient energy har-
vesters along with greater MEMS-CMOS integration are fu-
eling a new huge market [1]. The market of MEMS is pro-
jected to grow upto $95 billion by the begining of the next
decade making it one of the most lucrative areas of research
and investments [1].

This paper deals with the simulation aspect of MEMS de-
vices. Making a MEMS device can involve an array of com-
plex and expensive fabrication processes. Simulation is an
essential tool for proper design to prevent expensive waste
of manufacturing effort and also a safeguard against usage
failure. An archetypical MEMS vibrator is discussed and a
coupled FEM-BEM multiphysics approach is explained. A
few numerical results generated from the method are also
presented. Finally, the fast multipole method (FMM) and its
promise for MEMS simulation is discussed in a brief section.

2 Modeling MEMS

Modeling of a MEMS is a vital first step for design or test-
ing. Modeling incorporates a wide range of phenomena and
their mutual interactions. A plethora of force domains may
interact with each other in a single device requiring simul-
taneous modeling of electrostatic, elastic, fluid, magnetic or
even chemical fields. This multiphysics interaction results in
a spectrum of rich behavior in MEMS and at the same time
makes the task of modeling very challenging.

2.1 Electro-Mechanical Modeling of MEMS

One of the early approaches to deal with MEMS modeling
was the lumped parameter modeling. This model lumps
physical properties of systems like mass, elastic-stiffness,
capacitance and inductance into single idealized simulation
elements. This modeling is valid as long wavelength of sig-
nals are greater than all characteristic lengths of the system.
Transducers have been simulated using this model [3]. This
method’s applicability is improved by using a distributed
parameter system [4] which can be used to introduce infi-
nite degrees of freedom into the system. The usefulness of
lumped parameter decreases for more complicated large de-
formation and nonlinear problems.

On the other hand, domain specific multiphysics simu-
lations have been more popular in recent times for CAD
purposes being very useful in their versatility. The pri-
mary domains that intersect in MEMS research are electro-
magnetic, mechano-fluidic, thermal and chemical. Even
though MEMS are micron level systems, the continuum hy-
pothesis is entirely valid1. Hence, all laws of elasticity can
be used in a very classical sense for its analysis. However,
it is imperative to understand and exploit the uniqueness of
MEMS system. Most problems are resistant to analytic so-
lutions and require some kind of numerical technique. The
most widely used is the finite element method (FEM) though
finite differences are also used widely. Ones the weak form
has been derived the system is discretized and solved using

1Semiclassical methods can still find use in nanoscale NEMS devices
although the continuum hypothesis is not entirely valid here.
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standard nonlinear equation solving techniques. Mukherjee
et.al.[2] have derived an explicit finite element formulation
suitable for dynamics of MEMS beams and plates using a
moderate deformation assumption. Another line of attack
uses boundary element method (BEM) to tackle the elastic
problem accelerated through fast multipole methods (FMM).
However, this is still an active area of research and is yet
to prove its superiority over the conventional finite element
modeling. On the other hand, for the electrostatic domain,
external BEM formulation especially with thin structure ap-
proximation [5] has been more profitable by eliminating the
need for conventional BEM analysis over thin plates which
can result in ill conditioned matrices. On the other hand Liu
[7] has developed a novel composite BEM and Hypersingu-
lar BEM to solve the electrostatic problem without resorting
to the thin structure approximation. An FEM approach to
electrostatic problem is also used but for large number of
MEMS devices with complicated spacings, BEM has an ad-
vantage of reduction of the geometric dimension of the prob-
lem by one thereby reducing the meshing overhead. BEM is
also gaining an advantage in terms of computational speed
because of the introduction of the FMM to be discussed
briefly later.

2.2 Fluidic Effects in MEMS
Fluidic effects on MEMS is an active area of research spawn-
ing an enormous amount of literature in very short time.
The field of microfluidics is entirely dedicated to the un-
derstanding of these processes and its discussion is beyond
the scope of this present paper. However, the damping ef-
fects of fluids can have a direct bearing on the dynamics of
a MEMS device and will be discussed here. Even though
lumped parameter methods are used in fluidic systems, the
domain specific approach leads to better understanding and
more accurate solution. The governing equation for fluids
is the Navier-Stokes equation. In the small length scales in-
volved, the Navier-Stokes yields to simplified versions more
amenable to solution. In general, a dichotomy exists in mod-
eling damping effects of fluids in MEMS. One can assume a
low Reynolds number (low excitation frequency) when the
devices are moving relatively slowly and presume Stokes
flow to be valid. The Stokes flow leads to the equation,

∇p(x)−µ∇2v(x) = 0, x ∈ B (1)

In the above, v is the velocity, p is the pressure and µ is the
dynamic viscosity of the fluid. Also, B is the region exterior
to the structure and. The stress tensor σ inside the fluid, and
the surface traction τ on the solid surface, are defined by the
equations:

σ(x) =−p(x)I+µ[∇v(x)+∇T v(x)], x ∈ B (2)
τ(x) = σ(x) ·n(x), x ∈ ∂B (3)

where n(x) is the unit normal to the surface. However, in
many situations a fluid fills the space between two vibrat-
ing parallel plates. When the plate moves down, the fluid
pressure increases and fluid is squeezed out from the edges

of the plates. On the other hand, when the plate moves up,
the pressure is eased and viscous drag of the fluid creates a
dissipative mechanical force resulting in what is known as
squeezed-film damping [8]. The squeezed film modeling is
a now a rapidly developing area of research and many new
kinds of MEMS are being successfully simulated assuming
this model(See [9]).

2.3 Eulerian and Lagrangian Paradigms of
Simulation

One of the classical ways of simulation of a coupled MEMS
is to treat the domains separately, solving one and feeding
the output as an input to the other while dealing with the
current configuration of the system. This is the so called
Eulerian iterative process. Iterative processes are the tradi-
tional way of solving the coupled electromechanics of the
system. However, Aluru et.al. [10] have suggested a New-
tonian scheme for solution of the coupled problem wherein
the entire problem is solved in toto. In this scheme, the Eu-
lerian approach runs into trouble because the need to com-
pute derivatives of the changing domain in the electrostatic
BEM part of the code. Aluru [10] has proposed solving
the Lagrangian version of the coupled problem of this kind
wherein all the variables are referred to the initial config-
uration [11]. This entirely eliminates the need to remesh
the domain due to excessive deformation giving it an up-
per edge over other techniques. The Lagrangian-Newtonian
framework also helps to easily integrate additional physical
domains and inherits the excellent convergence properties of
the Newton method.

3 Coupled FEM-BEM Analysis of
Thin MEMS Beam

One can demonstrate the ideas developed in the previous
section to carry out a numerical simulation of a MEMS beam
clamped on both sides. Owing to its small size, significant
forces and/or deformations can be obtained with the applica-
tion of low voltages (≈ 10 volts). Examples of devices that
utilize vibrations of such beams are comb drives, synthetic
microjets, microspeakers etc. The system is schematically
described in Fig. (1). The electric, fluidic damping, inertial
and mechanical restoring forces are shown respectively as
FE , FD, FI and FM . The fluidic damping is not being consid-
ered in this paper but is fairly straightforward and easily in-
tegrable in the general scheme of the method and explained
in short in the appendix.

The beam deforms when a potential V is applied between
the two conductors. The charge redistributes on the surface
of the deformed beam, thereby changing the electrical force
on it and this causes the beam to deform further. As the
deformation starts, the damping effects due to fluids come
into play. The system then undergoes vibrations and the
complete analysis of the system is done using the Newton
scheme. Modeling of the entire system involves modeling
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Figure 1: Configuration of the MEMS Beam

of three intersecting physical phenomena, electrostatic, me-
chanical and fluidic. Each needs a corresponding model-
ing technique for better efficiency and accuracy. The exter-
nal electric field is modeled using the Lagrangian version
of the thin beam BEM approach [12] together with a hyper-
singular post processing gradient BIE to find the individual
charges. The mechanical problem is tackled using a mod-
erately large deflection FEM analysis. Finally, a Newton
scheme developed analogous to [10] is used to solve the en-
tire coupled nonlinear problem.

3.1 Electrical Problem - BEM Formulation
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Figure 2: Equivalent electrostatic problem

The governing electrical equations can be derived using
Laplace’s equation applied to the electrical potential. Our
system prototype described in Fig. (1) can be reduced to Fig.
(2) using the method of images. The derivation of boundary
integral equation for the external laplace problem using thin
structure assumption yields the following equations [12]:

φ(x+) =−
Z

s+1 ∪s+2

logr(x+,y)β(y)
2πε

ds(y) (4)

Where β(x) = σ(x+) + σ(x−), x+ ∈ S+
1 ,x− ∈ S−1 ,

r(x,y) = y−x from Fig. (2) and ε is the permittivity of
the medium. The lower beam being identical to the upper
doesn’t need separate analysis as charges are simply equal
and opposite. It must be noted that the above equation in-
corporating the thin structure assumption does not contain
information about the individual charges on the opposite sur-
faces. To obtain that information, one can use Eq. (4) to get
the following hypersingular BEM equation [12],

1
2
[σ(x+)−σ(x−)] =

Z
s+1 ∪s+2

β(y)r(x+,y) ·n(x+)
2πr2(x+,y)

ds(y) (5)

where n(x+) is the unit normal vector at point x+.
It must be noted that Eq. (4) and Eq. ( 5) contain singular

kernels and must be regularized (See [5] and [12] for regu-
larization version) before the BEM analysis can be carried
out.

3.2 Fully Lagrangian Electrical BEM
Eq. (4) and Eq. (5) are the set of BEM equation required
to solve the electric problem. However, they are still ex-
pressed in the current or Eulerian coordinates and need to be
expressed in Lagrangian coordinates. The change of vari-
ables for the displacement vectors can be formulated as,

r(x(X),y(Y))≡ R(X,Y) = y(Y)−x(X)
= Y+u(Y)−X−u(X)

= R0(X,Y)+u(Y)−u(X) (6)

Where R0 is the initial relative position. Next, define Σ, the
charge density per unit undeformed surface area. Also de-
fine:

B = Σ+ +Σ− (7)

The transformation of Eq. (4) is pretty straightforward from
the above transformation rules and noting that ΣdS = σds.

φ(X+) =−
Z

S+
1 ∪S+

2

logR(X+,Y)B(Y)
2πε

dS(Y). (8)

where upper case letters denote Lagrangian description.
However, we need more care to transform the hypersingular
BEM Eq. (5). The conversion to the Lagrangian framework
can be started by using Nanson’s Law [17]:

nds = JN ·F−1dS. (9)

where n and N are unit normal vectors to ∂b and ∂B, at the
generic points x and X, respectively, F = ∂x

∂X is the defor-
mation gradient, J = det(F) and dS is an area element on
∂B. Here, X and x denote coordinates in the undeformed
and deformed configurations, respectively. From, Eq. (9)
and noting that ΣdS = σds it follows that:

Σ = Jσ|N ·F−1|. (10)

4 Mechanical Problem in the Elastic
Beam

Nonlinear deformation of a beam without any initial in-plane
forces, is discussed in this section. The beam is linearly elas-
tic, has immovable ends and is of uniform cross section. The
cross section is symmetric such that there is no twisting of
the beam under applied bending moments. Also, u(x) is the
axial deformation and w(x) the transverse displacement of
the mid-line of the beam.
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4.1 The Model
The kinematic equations can be derived starting from the
following nonlinear strain-displacement equation [13]:

εi j =
1
2

( ∂ui

∂x j
+

∂u j

∂xi

)
+

1
2

(∂um

∂xi
· ∂um

∂x j

)
. (11)

This leads to the kinematic equations:

εxx = u,x +1/2 · (w,x)2 (12)
κx = −w,xx, (13)

here, εxx is the midline axial strain and κx is the curvature.
Here ,x denotes the derivative with respect to the axial coor-
dinate x. The strain energy E (s) and the kinetic energy E (k)

of an uniform beam of length L are,

E (s) =
ES
2

Z L

0
[(u,x)2 +u,x(w,x)2 +(1/4)(w,x)4]dx

+
EI
2

Z L

0
(w,xx)2dx (14)

E (k) =
ρS
2

Z L

0
[(u̇)2 +(ẇ)2]dx. (15)

Here, E, ρ, L, S, L are the Youngs modulus, density (mass
per unit volume), length, area of cross section, and area mo-
ment of inertia of the cross section of the beam, respectively,
and a superposed dot denotes differentiation with respect to
time t. Similarly the work expression can be written as,

W =
Z L

0
(Hxdu+Hydw+Mdw,x)dx. (16)

Here Hx, Hy and M are the axial force, transverse force and
bending moment, respectively.

4.2 Finite Element Model for Beams with Im-
movable Ends

The procedure followed here for FEM discretization of vi-
brating beams, is similar to standard methods(see, e.g.,
Zienkiewicz and Taylor [14]). However, in this particular
problem the standard beam element needs a slight modifica-
tion. This modification is necessitated because the usual lin-
ear interpolation for the axial deformation results in disconti-
nuities during residue computation in the Newton’s scheme.
Hence, a quadratic interpolation is taken for the axial de-
formation. A standard Hermitian interpolation is used for
bending . The beam element used in this present problem
thus has a total of seven degrees of freedom. Three axial at
three axial nodes and two transverse and two rotational de-
grees of freedom at the end nodes. These degrees of freedom
can be written as:

u = [u1 u2 u3] w = [w1 w2] θ = [w,x1 w,x2] (17)

Now, the values of the primary deformations u, w inside the
elements can be interpolated from the above nodal values
using,

[
u(x, t)
w(x, t)

]
=

[
N(I)(x) 0

0 N(0)(x)

]
·
[

q(I)(t)
q(O)(t)

]
(18)

wherein

[N(I)(x)] = [N1 N2 N3], [N(O)] = [P1 P2 P3 P4] (19)

[q(I)(t)] = [u1 u2 u3]T , [q(O)(t)] = [w1 θ1 w2 θ2] (20)

Here Nk and Pk are third order Lagrange and cubic
(Hermite polynomials) interpolation functions, respectively
and q(I) and q(O) contain the appropriate nodal degrees-of-
freedom. Substituting the interpolations from Eq. (18) into
the work energy expressions from Eq. (14), Eq. (15) and Eq.
(16) and use of Hamilton’s principle leads to the following
element level equations [2]:

[M]{q̈}+[K]{q}= {P(t)} (21)

Here, [M] is the consistent mass matrix, [K] the stiff-
ness matrix, {P(t)} the work equivalent load vector and
q = {q} = [q(I) q(O)] (See [2] for details of these matri-
ces and vectors). The loading is caused by the electrical
charges and is given by the traction equation expressed in
Lagrangian form using the transformation laws developed in
section 3.2,

H =−Jσ2N ·F−1

2ε
=− Σ2

2Jε
N ·F−1

|N ·F−1| (22)

5 Newton’s Scheme for Solving the
Coupled Problem

Newton’s method is an iterative root-finding algorithm that
uses the first few terms of the Taylor series of a function
f : R→ R in the vicinity of a suspected root. The algorithm
can be written for a one dimensional case as,

xn+1 = xn− f (xn)
f ′(xn)

, n≥ 0.

For the multivariate case, f : Rp → Rp,

x ∈ Rp : f (x) = 0 ∈ Rp

xn+1 = xn− J f (xn)−1 f (xn), n≥ 0 (23)

where J f (x) denotes the Jacobian of the function f (x). It is
straightforward to re-cast Eq. 23 in the context of the current
problem by replacing the vector function f (x) by a relevant
vector function for the present problem.

5.1 Domain Residuals
Newton’s scheme is used to solve the entire system of cou-
pled electro-mechanical problem together. The relevant vec-
tor functions used in the present case are called residuals.
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Eq. (4) gives the electrical residual and Eq. (21) the mechan-
ical. In addition, the auxiliary Eq. (5) is used in conjunction
with Eq. (22) as an inter-domain coupling equation. It must
be noted that the primary variables are B and U = [u w θ]
representing respectively the electrical and mechanical vari-
ables.

The electrical residual can be formed from Eq . (8), as

RE(q,B) = φ(X+)+
Z

S+
1 ∪S+

2

logR(X+,Y)B(Y)
2πε

dS(Y).

(24)
Similarly the mechanical residual can be formed from Eq.
(21):

RM(q,B) = [M]{q̈}+[K]{q}−{P(B, t)} (25)

5.2 Newmark Scheme for Time Integration
The Newmark method [18] is a widely used time integra-
tion scheme for dynamic analysis in finite element modeling.
There are various ways of implementing Newmark scheme,
one which is used in the present work is called the a−form
[19]. Define predictors,

q̃n+1 = qn +∆tvn +
∆t2

2
(1−2β)an

ṽn+1 = vn +(1− γ)∆tan. (26)

The next step is to use the predictors to obtain the actual
quantities,

qn+1 = q̃n+1 +β∆t2an

vn+1 = ṽn+1 + γ∆tan+1. (27)

Here β and γ are algorithmic parameters that are fine tuned
for integration accuracy and numerical stability. For a dis-
cussion on the effect of these parameters on the performance
on the algorithm, see [19].

To start the process, a0 = q̈(0) can be calculated from

Ma0 =−Kq(0)+P(B(0)). (28)

To march forward in time for acceleration, one needs to
solve the time discrete version of the dynamic Eq.(21),

Man+1 +Kqn+1 = P(Bn+1), (29)

This equation set is nonlinear would be solved using the
Newton scheme.

5.3 Implicit Time Integration
Finally, time integration for the problem is implemented us-
ing the Newmark scheme utilizing Newton’s scheme. The
dynamic equation can be formulated as,

Mq̈(t)+Kq(t) = f(B(t)). (30)

Here f(B(t)) denotes the entire force loading term obtained
through BEM analysis.

Now define,

R(q,B) =
(

RE
RM

)
(31)

Here, R is the grand residual for the problem. The Newton
iterative scheme is essentially:

(
∂RE
∂B

∂RE
∂q

∂RM
∂B

∂RM
∂q

)(k)

·
(

∆B
∆q

)(k)

=−
(

RE
RM

)(k)

(32)

q(k+1) = q(k) +∆q(k) B(k+1) = B(k) +∆B(k) (33)

We are using superscripts to denote Newton iteration step
and subscript for Newmark integrator. Starting with k = 0,
Eq. 32 is iterated until convergence. At convergence,
R(k) ≡ R(q(k),B(k))→ 0. This iteration helps us find the
value of an needed at each step of time integration through
an update of q(k)

n . The algorithm for the coupled scheme is
described as below,

1. Solve BEM on ∂B for applied voltage and compute the
traction H0 from Eq. (22).

2. Set initial values of displacement q0 and velocity v0
to 0 and compute initial acceleration using a0 = M−1f0

from Eq. (30)

3. Set a(0)
n+1 = an,v

(0)
n+1 = vn and q(0)

n+1 = qn.

4. Estimate q̃n+1 and ṽn+1 from qn and vn using Eq. (26).

5. B(0)
n+1 = Bn

6. Set k = 1

7. Newton iteration for time step n+1:

(a) Use Eq. (24) and (25) to compute the value of
requisite residuals.B = B(k)

n+1,q = q(k)
n+1.

(b) Compute required four residual gradient from the
relevant equations where B = B(k)

n+1,q = q(k)
n+1.

(c) Update acceleration as a(k)
n+1 = 1/β∆t2(q(k)

n+1 −
q̃n+1) and v(k)

n+1 = ṽn+1 + γ∆ta(k)
n+1

(d) R(k)
M = R(k)

M + Ma(k)
n+1 and ∂RM/∂q|(k) =

∂RM/∂q|(k) +1/(β2∆t2)M
(e) Plug the above residuals to Eq. (32) and solve for

the increments.
(f) Use Eq. (33) to update variables through incre-

ments.
(g) Compute the tolerance.
(h) Update k=k+1
(i) If tolerance is high, repeat from step (7).

8. an+1 = a(k)
n+1,vn+1 = v(k)

n+1,qn+1 = q(k)
n+1

9. Bn+1 = B(k)
n+1

10. n = n + 1 and repeat from step (3) till required time
limit is reached.
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6 Numerical Results
The method described above can be used to accurately sim-
ulate MEMS. Some of the mesh converged numerical results
are discussed here. The time displacement curve for the
MEMS under DC bias is shown in Fig .(3). The curve gives
an excellent agreement with theoretical natural frequency of
vibration.
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Midpoint displacement vs time curve for a MEMS beam with a DC bias without damping

Figure 3: Time-Displacement curve for undamped MEMS.
Time axis is nondimensionalized by natural time period of
beam and displacement axis by initial gap

Fig . (6) shows an important MEMS phenomenon of pull-
in instability 2. According to Nayfeh et. al. [20], the pull
in shall commence when the gap is approximately reduced
to 43% of the original. The result from this analysis predicts
the same results.
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Figure 4: Voltage vs displacement curve for undamped
MEMS. Static pull-in phenomenon

One of the interesting plots is Fig. (5) which shows
V 2 ∝ Fapplied vs displacement curve. The nature of the curve
clearly shows the effects of competing nonlinearities in the
entire process. The electrical effects tend to soften the beam
whereas the mechanical membrane effect tends to stiffen the
beam. The result of the curve clearly show that the final na-
ture of the beam in this model is hardening indicating the
mechanical stiffness to be of overpowering consequence.

If on the other hand, the MEMS beam is excited us-
ing an AC bias, we clearly see the resonance phenomenon.
The model correctly predicts the fold-over characteristic of

2Pullin is essential for using MEMS as a bistable switch
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Figure 5: V 2 ∼ Force vs displacement curve. Competing
nonlinearity of electrical and mechanical domain.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Excitation AC frequency (kHz)

w
0/g

ap
0

Amplitude−Frequency plot for a MEMS device

Figure 6: Amplitude vs frequency curve for undamped
MEMS. Notice the nonlinearity of the beam near resonance

the resonance curve approximately around the natural fre-
quency. The result shows excellent agreement with the ana-
lytical predictions.

7 Looking Ahead: Fast Multipole Ac-
celerated BEM

One of the most important concerns of any simulation
method is speed along with accuracy. A typical microde-
vice may have a huge number of MEMS packed in a small
space. Computational speed is essential if system needs to
be numerically analyzed in many different situations. The
electrostatic field and stokes damping may need boundary
element analysis which are typically slower and can prove
bottlenecks in analysis. The other alternative of using finite
elements runs into trouble because of the need for mesh-
ing such complicated configurations especially in full blown
3-D problems. The computational requirements for bound-
ary element method are demanding and will require several
generations of Moore’s law to catch up with the inefficien-
cies. One of the most exciting developments in this area has
been the fast multipole methods (FMM) developed first by
Rokhlin [21] and later popularized by Greengard [22]. Ex-
planation of the details of FMM is beyond the scope of the
present paper and the reader is requested to read Nishimura
[23] for an exhaustive review on this subject. The present
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challenges are related to utilizing FMM for accelerating
MEMS specific problems. Densely packed large number of
Thin and ultra-thin structures present the next generation of
challenges [6],[7]. The speed of computation promises to re-
main an important issue for any attempt at large scale CAD
development.

8 Conclusions
A variety of topics relevant to MEMS simulation have been
discussed and thin beam approximation method has been
described in detail. The simulations show excellent agree-
ment with theoretical data whenever available and have the
promise to be integrated into a larger CAD substrate. In
addition the method outline is extremely versatile and can
be easily used to add layers of multiphysics and multido-
main influences (see Appendix). With newer and more am-
bitious application possibilities, this market is set to scale
new heights and will prove decisive to bring down the over-
all cost of design and fabrication.
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Appendix

A Damped Vibration Analysis As-
suming Stokes Flow

In terms of Green’s function solution, we can transform Eq.
(1) in the following form,

v(x) =
Z

∂B
T(x,y)v(y)ds(y)

+
Z

∂B
G(x,y)τ(y)ds(y), x ∈ ∂B (34)

where v is the velocity of the fluid, G(x,y) the Green’s
function,T is the traction kernel, τ the traction due to fluid.

A.1 Forming Fluid Residual
Let us denote the electrical, mechanical and fluidic variables
as E, M and F . It is now straightforward to construct the
residual from Eq. (34),

RF(E,M,F) = v(x)−
Z

∂B
T(x,y)v(y)ds(y)

−
Z

∂B
G(x,y)τ(y)ds(y) (35)

Analogous to the BIE electrostatic problem [5],[15] con-
sider the flow in a region outside of, in this case, a single thin
beam. (One beam is considered for simplicity of explanation
- flow around many beams can also be easily modeled). It
has been shown by Mukherjee et. al. [16] that for a thin
beam, with x+ ∈ s+,

vi(x+) = gi(x+) =
Z

s+
= Ti j(x+,y)w j(y)ds(y)

+
Z

s+
Gi j(x+,y)q j(y)ds(y), x+ ∈ s+ (36)

where q j = τ+
j + τ−j and w j = v+

j − v−j .
For a thin beam v+

j ≈ v−j , causing the first integral on the
right hand side to disappear in Eq. (36). The above equations
then simplifies to:

vi(x+) = gi(x+) =
Z

s+
Gi j(x+,y)q j(y)ds(y), x+ ∈ s+

(37)
It has been shown by Mukherjee et.al. [16] that null space
of the kernel G is empty and Eq. (37) has a unique solution
for any prescribed velocity g(x) on ∂B = s+∪ s−.

A.2 Newton’s Method Implementation
Once the residuals and gradients are computed, the Newton’s
method can be implemented as before,




REE REM REF
RME RMM RMF
RFE RFM RFF




n

·



∆E
∆M
∆F




n

=




RE
RM
RF




n

where RAB denotes ∂RA/∂B, and En+1 = En +∆En, Mn+1 =
Mn +∆Mn, Fn+1 = Fn +∆Fn.

The fluid variable for our case would be fluid traction {τ}
which will contribute to the right hand side of Eq. (30).
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