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Abstract 
 
Circa 1830 Ampère developed a new classification of human 
knowledge, which included the definition of a new sub-
science of mechanics called kinematics. In this paper I will 
discuss the background of this proposal. I will in particular 
discuss Lazare Carnot’s Essai sur la composition des 
machines of 1783 and his Principes fondamentaux de 
l’équilibre et du movement of 1803. Lazare Carnot started 
the investigation of machines in terms of energy. Moreover 
Carnot’s approach is such that it will become clear as well 
that an independent geometrical science of motion that does 
not take masses and forces into consideration was in the air.  
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1. Introduction 
 
Mechanical engineering is essentially a multidisciplinary 
activity (Cf. [1]). Unlike, for example, mathematics, physics 
or chemistry, mechanical engineering primarily deals with 
artifacts, entities that are man-made. Moreover, because 
machines are functioning in the real world the many 
different aspects that they possess are in principle all 
important. Machines possess economic, legal and other 
cultural aspects as well. New inventions and new 
technologies can lead to changes in existing machines or to 
the introduction of new machines. This obviously leads to 
situations in which mechanical engineers must adapt to the 
new circumstances and this sometimes involves the learning 
of other disciplines. The notion 'the best possible machine' is 
in principle not only dependent on new developments in the 
sciences but in addition on, for example, the introduction of 
new laws or economic developments. As long as there are no 
environmental laws the designer of an engine can ignore the 
nature of the gasses that the engine releases in nature. New 
legislation can change this drastically. The laws of nature are 
independent of human institutions but yesterday's best  

 
 
 
 
possible machine can easily cease to be the best possible 
machine today because of external developments. This 
multidisciplinary character of mechanical engineering 
science (MMS) is reflected in its history.  In the 
development of MMS first the aspect of machines that can 
be handled by means of statics was studied. The functioning 
of the basic machines like the lever, the pulleys, the wedge 
and the screw was explained by means of the law of the 
balance: there exists equilibrium if the weights are inversely 
proportional to the distances from the center. Big machines 
were viewed as combinations of simple machines and 
understanding the simple machines was viewed as implying 
the understanding of the combinations as well.   
 In particular during the industrial revolution the 
complexity of the new machines led to the insight that the 
great variety in the geometry of machines requires separate 
investigation.  Machines came to be seen as compounded of 
mechanisms and mechanisms could be classified according 
to the way in which they transform motion. This led to 
Monge’s classification of mechanisms, first published by 
Lanz and Betancourt [2].  About 1830 Ampère coined the 
word ‘kinematics’ for a new sub-science of mechanics which 
would deal with motion without taking forces and masses 
into consideration. The geometrical or kinematical aspect of 
machines and mechanisms was studied extensively in the 
19th century.  
 However, other aspects of machines were 
theoretically studied as well. In 1783 Lazare Carnot initiated 
the investigation of machines in terms of energy with the 
publication of his Essai sur les machines en general. This 
energetic aspect of machines was also studied by Coriolis in 
1829 ([3]). Cf. also [6]. Lazare Carnot’s son, Sadi Carnot, 
and the other authors on thermodynamics can be viewed as 
dealing with this aspect of machines.  
Below I will discuss Lazare Carnot’s approach to machines. 
We will see how he deals with the energetic aspect of 
machines. In his considerations Carnot introduced the notion 
of ‘geometrical movement’, which he considered as so 
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important that in 1803 he even wrote about a “special 
science of geometrical movements”, that had to be 
developed. It was no accident that Ampère when he 
introduced the word ‘kinematics’ referred to both Lazare 
Carnot and to Lanz & Betancourt ([9], p. 48).       

 
2. Biography of Lazare Carnot 
 
Lazare Carnot (1753-1823)1 was trained at the military 
school in Mézières where the abbé Charles Bossut was 
professor. Bossut was, moreover, the author of a successful 
textbook, Traite élémentaire de mécanique et de dinamique 
appliqué principalement aux mouvemens des machines, 
Charleville, 1763 that was used at the school. So it may have 
been Bossut’s book that triggered Carnot’s interest in 
machines. The second ‘book’ of Bossut’s 1763 textbook on 
mechanics, applied in particular to machines, is devoted to 
the communication of movements, that is, the theory of 
collisions. This theory with respect to collisions of hard 
(non-elastic) bodies was applied by Carnot. However, it is 
very probable that Carnot’s main source of inspiration was 
D’Alembert’s Traité de Dynamique (1758).  
 Before Carnot, the theory of machines was usually 
restricted to the elementary machines, of which the 
functioning was explained by means of the laws of statics. 
Beyond such considerations there was no coherent theory of 
machines at the time. This is understandable. The rational 
mechanics of the 18th century itself was very much under 
construction. A principle like potential energy plus kinetic 
energy is constant (in a conservative force field), familiar to 
every student of mechanics, was unknown. The notion of 
‘work’ did not exist either. A famous 18th century issue 
concerned the question whether momentum = mass times 
velocity or ‘life force’ = mass times velocity squared was the 
fundamental quantity conserved when motion was 
transferred. In the collision theory of hard and elastic bodies 
momentum was conserved. In collision theory of perfectly 
elastic bodies the live force was conserved as well, but not in 
the collision theory of ‘hard bodies’. The notion ‘hard body’ 
is important on 18th century mechanics (Cf. [8]).  The 
ultimate corpuscules in nature were imagined to be 
completely impenetrable. Hard solid matter was considered 
to consist in such corpuscules connected to each other by 
perfectly rigid rods. In elastic matter the rods were imagined 
as springs.  
 It seems that Carnot as a young lieutenant in the 
Royal Corps of Engineers, after having graduated on January 
1, 1773, remained interested in mechanics and studied works 
by D’Alembert and Euler. Garrison duty at Calais, Le Havre 
and elsewhere must have been pretty boring for an ambitious 
and intelligent young man.  

                                                 
1 Charles Coulston Gillespie, Lazare Carnot Savant, 
Princeton University Press, Princeton, New Jersey, 1971 

 Then, on April 18, 1777 the Gazette de France 
announced a prize contest organized by the Academy of 
Sciences in Paris. The Academy requested for the 1779 prize 
a treatise about “the theory of simple machines with regard 
to friction and the stiffness of cordage”. It was required that 
the laws of friction and the investigation of the effects of the 
stiffness of cordage be determined by means of new 
experiments conducted on large scale. It was further required 
that these experiments would be applicable to machines used 
in the Navy such as the pulley, the capstan, and the inclined 
plane”. ([7], p. 272). Carnot read the announcement and 
decided to try his luck. His treatise, written in less than a 
year, was received by the Academy on March 28, 1778. 
Unfortunately the judges felt that Carnot had not answered 
their questions satisfactorily. Actually, they found none of 
the submitted papers good enough. That is why the Academy 
set the same problem again in 1781. Carnot gave it another 
try but this time C. A. Coulomb won, although Carnot was 
awarded honorable mention. Coulomb’s paper, « Théorie des 
machines simples en ayant égard au frottement et à la roideur 
des cordages » (Mémoires des Savants étrangers, Vol X), is 
nowadays considered as one of the first important 
contributions to the theory of friction. It is a model of 
experimental analysis in which the friction of oak on oak, 
oak on fir, fir on fir, etc. are systematically studied. 
  It is not surprising that Carnot’s treatise was 
rejected by the Academy. The Academy clearly wanted 
experiments and results applicable in the Navy. Carnot did 
some experiments, but the title of his treatise was not 
accidentally Mémoire sur la théorie des machines. In the 
treatise Carnot started to develop a general theory of 
machines. In the next few years he turned his treatise for the 
Academy into a book which appeared in 1783 under the title 
Essai sur les machines en general (Defay, Dijon,1783).   
 The French Revolution started in 1789. In June 
1793, a critical phase in the history of France, when Austria 
and Prussia had both declared war on France with the aim to 
restore the rule of King Louis XVI , Carnot became member 
of the Comité du Salut Public responsible for military affairs. 
For four years Carnot shared in the supreme power in 
France, mainly dealing with military matters. Carnot was a 
child of the age of Enlightenment and a firm believer in the 
value of science and technology. He got involved with the 
mathematician Gaspard Monge, the chemists Jean-Antoine 
Chaptal (1756-1832)2, Claude Louis Berthollet (1748-1822) 
and others with the aim to integrate French science and 
technology in the defense of the country. Monge rewrote a 
handbook on the production of guns, Chaptal was from 1974 
in charge of the production of gunpowder. A part of this 

                                                 
2 Chaptal was one of the first chemists to accept Lavoisier’s 
ideas. He is important in the history of economic thought as 
well: Elsa Bolado and Luis Argemi, Jean Antoine Chaptal: 
from chemistry to political economy , The European Journal 
of the History of Economic Thought, 12:2, pp. 215-239 
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process was also the creation in 1794 of the École centrale 
des travaux publics that got the name École Polytechnique 
one year later in 1795.  
 The Academy was abolished in 1793 and in 1795 
replaced by the Institute. In 1796 Carnot became a member. 
After 1800 the Institute became Carnot’s chief interest, 
serving on many commissions dealing with technology.  At 
the request of others, as he wrote himself, in 1803, Carnot 
published an elaborated version of his 1783 book with the 
title Principes fondamentaux de l’équilibre et du movement 
([5]). The book does not contain anything new compared to 
the early version, but the second version makes the 
understanding of the early very concise version much easier.  
Carnot supported Napoleon all the way, also after 
Napoleon’s return from Elba. In the ‘government of the 
hundred days’ Carnot was minister of the interior. When 
Napoleon was imprisoned on St. Helena, Carnot had to go 
into exile. He died in 1823 in Magdeburg.   
 
 
3. Carnot’s theory of machines 1 
 
Let me try to reduce Carnot’s theory of machines to a few 
central ideas.  

i) The mass of the parts of a machine must be 
taken into consideration. One can study a lever 
or a system of pulleys by abstracting from the 
mass of the mechanism and by studying the 
equilibrium of a few forces. However, in a 
general theory of machines the mass of all parts 
of the machine must be taken into 
consideration. 

ii) There is another reason why Carnot rejects the 
classical approach based on the laws of statics 
to the elementary machines. The notion of 
force is for Carnot a metaphysical notion unless 
it is defined in terms of empirical notions like 
mass and velocity. A theory of machines 
should be based upon only a theory of the 
communication of movements. What Carnot in 
fact said was: kinematics first, then dynamics, 
and statics is a special case of dynamics.   

iii) A machine is a connected system of (hard) 
bodies. The connections between the bodies 
constrain the movement of the bodies. The 
geometry of the system determines which 
motion is possible and which is not.  

iv) The constraints mentioned in iii) cause 
interactions between the bodies.   

v) These interactions can take place smoothly (in 
Carnot’s words: “par degrees insensibles”) or 
by means of collisions.  Because such smooth 
interaction can be viewed as the result of a 
sequence of infinitesimally small percussions, 

we need only one theory for both cases. This 
theory is based on a theory of collisions.   

 
Imagine a machine consisting of hard bodies. The first thing 
to study is the interaction at a certain moment in time of two 
of such hard bodies. That is what Carnot did. 
Imagine we have a body of mass M, which possesses before 
the interaction velocity W and after the interaction velocity 
V. Then we have a body of mass M’, which has before the 
interaction velocity W’ and after velocity V’.  Nota bene: 
Carnot treats velocities in fact as vectors although he does 
not possess the full notational apparatus of the vector 
calculus. This makes the reading of Carnot somewhat 
difficult. It depends on the context how U, V and W must be 
interpreted. By definition U=W-V and U'=W'-V' (these are 
vector equations) are the velocities lost by the two masses in 
the collision. Z is the angle between respectively U and V; 
Z’ is the angle between U' and V'. The interaction of the 
bodies can be understood in terms of the fundamental laws 
of the theory of collisions: i) Action is reaction directed 
along the normal to the touching surfaces (action and 
reaction are forces determined by multiplying a mass with a 
velocity), ii) After the shock the relative velocity of two 
touching surfaces in the direction of the normal is zero. Hard 
bodies do not bounce. The idea to treat a system of 
interacting bodies in this way comes from D’Alembert’s 
Traité de Dynamique (Cf [10 ], pp. 248-253).  

 
Figure 1 

 
This leads to the following two equations: 
 

MU=M'U', 
 

Vcos Z=-V'cos Z'. 
 

Nota bene: In these equations U, U', V' and V are scalars and 
no longer vectors. The first one expresses: Action is reaction. 
The second one: After the interaction the bodies have equal 
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relative velocities These two equations yield by multiplying 
them3 the following scalar equation:  
 

MVUcosZ+M'V'U'cosZ'=0. 
 
In the Essai Carnot immediately generalizes to a multi-body 
system and he writes his First Fundamental Equation 
 

∑ mVU cos <U,V> = 0.                         (E) 
 
N. B. In ‘cos <U,V>’ where <V,U> is the angle between V 
and U, U and V are vectors; in ‘mVU’ they are scalars. This 
generalization (E) to a multi-body system is not a completely 
trivial move. In the Principes Carnot carefully considered 
the case that a hard body interacts with several other hard 
bodies at the same time. Formula (E) still holds.  
 
Formula (E) is powerful. For example, we have for all 
vectors W, V, U with W=V+U, the scalar equation: 
  

W2=V2+U2+2VU cos<V,U>, 
 
which implies (Cf. Principes p. 146) with (E): 
 

∑MW2=∑MV2+∑MU2. 
 

 
Figure 2 Lazare Carnot. Lithograph (22x16 cm) , Print artist: 

Ducarme, 19th C. Original Artist: R. J. 
Courtesy of the Dibner Library portrait collection. 

 

                                                 
3 In the Essai the derivation is on pp. 15-22 and in the 
Principes on pp. 131-143 

On the basis of this scalar formula Carnot draws on p. 148 of 
the Principes the conclusion that if we avoid collisions and 
the motion in a machine only changes smoothly, “par 
degrees insensibles”, ΣMU2 is so small (of the second order, 
he says) that we can ignore it and we get 
  

∑MW2=∑MV2. 
     
On p. 255 of the Principes Carnot argued that percussions or 
other sudden changes in the functioning of a machine should 
be avoided. They cause the loss of live force, “déperdition de 
forces vives”. J. A. Borgnis wrote in 1823 in his Dictionaire 
de mécanique appliqué aux arts (pp. 57-58) that Carnot had 
advocated to boost the efficiency of machines by avoiding 
to-and-fro motions and eliminating sudden impacts 
(according to [8], p. 204)   
 The geometry of the constraints of a system of hard 
bodies determines which motions are possible and which 
not. An important question in a theory of machines is 
undoubtedly the question which of the possible motions is 
the one that actually takes place.  
 In this respect one of the notions that Carnot 
introduced and of which he was proud was the notion of 
geometric movement (mouvement géométrique). In the Essai 
Carnot considered the reversibility of a movement as 
characteristic of this type of movement (pp. 23-24).  In the 
Principes he defines a geometric movement as movements 
that do not have any effect on the interaction of the bodies on 
each other. In the Principes he proves from the definition 
that the inverse of a geometric movement is another 
geometric movement. He also proves that the combination of 
two geometric movements is another geometric movement.     
Let us see how Carnot derives his second fundamental law. 
Consider the first one:  
  

∑ mVU cos <U,V> = 0.                            (E) 
 
 In this formula U=W-V is the velocity distribution 
lost when the interaction turned an initial velocity 
distribution W into a velocity distribution V. The velocity 
distribution V is obviously an example of a geometric 
movement. Let u be an arbitrary geometric movement. Then 
u-V is a geometric movement as well (the inverse –V of V is 
one and the sum of u and –V is one). Because a geometric 
movement does not interfere with the interaction of the 
bodies, we can simply superpose it on the system before an 
interaction. Then we get an initial velocity distribution 
W+(u-V). The resulting velocity distribution after interaction 
will be V+(u-V)=u. The velocity distribution that is lost will 
be W+(u-V) – (V+(u-V))=W-V=U. So application of (E) 
yields the Second Fundamental Formula: 
 

∑ muU cos <U,u> = 0                                (F)  
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for an arbitrary geometric movement u and all possible 
distributions U of velocities that can be lost because of 
interaction.  
(F) is a powerful formula as well. Carnot proves that after 
sudden change in the state of a system the geometrical 
movement that actually results is the geometrical movement 
that corresponds to a minimum of ∑MU2.  
Proof:  We have (F). Suppose that instead of the movement 
V actually occurring after the sudden change the movement 
V-u' (u' is an infinitesimal geometrical movement) occurs. 
We do not change W, the movement before the sudden 
interaction of the hard bodies. The new velocity lost is then, 
obviously, U' =W-(V-u' ) = V +U-V + u' = U+u'. So u' is the 
vector U increases as a result of the change in V. then we 
have from (F): 

∑ mu'U cos <U,u'> = 0 or  
 

∑ mU u'cos <U,u'> = 0, 
 
but then, u'cos<U,u'> is the scalar increment of U (the 
projection of u' on U). We can call it δU, the increase in the 
length of U. We get: 
 

∑ mU δU = 0 or δ ∫ mU2=0. 
 

Supposed infinitesimal changes in the output velocity after 
the sudden interaction of the bodies show that ∫ mU2 must 
possess an extremum.  
  
4. Carnot’s theory of machines 2 
 
Let us now look at some of Carnot’s conclusions with 
respect to machines.  
 A crucial notion is the notion of kinetic energy. As 
we have seen Carnot uses the term “living force “(force 
vive”) and uses the formula mv2 for it, instead of the modern 
½ mv2. However, he also has the notion “latent living force”. 
A weight P with mass M at a height of H has a latent living 
force (we would nowadays say potential energy) equal to 
P.H. When the weight falls, after having covered the distance 
H, its velocity is V and its living force equals ½ mV2.The 
latent living force has been turned into actual living force: 
PH=½ MV2. 
 It is interesting that Carnot describes an animal as 
an assembly of springs that contains latent kinetic energy 
which can be turned into actual kinetic energy.  
Another important notion is “momentum of activity” or 
“effect” (We would nowadays say work). A weight P with 
mass M can be lifted with uniform velocity V in time T over 
a distance H with a constant lifting force F. Then the 
moment of activity or effect equals FMT. And FMT=PH.  
Here we see that that a “momentum of activity” can be 
turned into latent living force, which can be turned into 
living force by dropping the weight again.  

 Clearly Carnot is very close to the notion of work in 
relation with the principle of the conservation of mechanical 
energy.  
 As for machines Carnot points out that in machines 
it is the “moment d’activité” that one must “economize as 
much as possible”. Losses of “moment d’activité” are to be 
avoided in machines. Unnecessary motion should be 
avoided. For example, water arriving in a reservoir with a 
velocity higher than necessary will cause unnecessary 
consumption of “l’effort de la puissance motrice”. And 
finally friction, air resistance and the like ought to be 
avoided. 
 
5. Carnot: the science of geometric 
movements 
 
In the preface of the Principes Carnot argues that there are 
two ways to consider the principles of mechanics. The first 
one is to define mechanics as the theory of forces. The 
second one is to define mechanics as the theory of motion. 
Clearly Carnot prefers the second definition. In the first case 
one starts with an obscure notion, the notion of force. 
However, if one accepts this notion one can postulate the 
axioms of statics, develop statics and relate motion to force 
as follows: One introduces a fictitious force equal in 
magnitude to the product of the mass of the body and its 
acceleration directed opposite to the acceleration. This leads 
to a condition of kinetic equilibrium. Although this first 
approach was generally accepted at the time Carnot chose 
the second approach. In this context he introduced his theory 
of geometric movements. Consider the following quotation: 

“The theory of geometrical movements is 
very important; it is […] a kind of science 
intermediate between ordinary geometry and 
mechanics. It is the theory of the movements 
that an arbitrary system of bodies can make 
in such a way that they do not hinder each 
other or exert some action or reaction on 
each other. This science has never been dealt 
with in particular. This science must be 
created completely and it deserves for its 
beauty and its utility the full attention of the 
scholars; because the great analytical 
difficulties one meets in mechanics and 
especially in hydraulics are only caused by 
the fact that a theory of geometrical 
movements has not been created at all.” 
[Principes, p. 116; italics are mine].    

These geometrical movements are completely determined by 
the geometry of the machine. On an abstract level this view 
of machines is related to Monge’s view of machines 
elaborated in  the Essay on the composition of machines  
prepared by Lanz and Betancourt [2] in which the emphasis 
is also very much on the geometry of the machines.   
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6. Ampère   
 
Ampère coined the word ‘kinematics’. When he did so, not 
only the views of Carnot and Monge on machines were on 
his mind. Maybe the fact that he had decided to give a new 
classification of the sciences was even more important. I will 
describe the background of this new classification and the 
position of kinematics in it. The classification very much 
reflects the state of science in the first half of the 19th 
century. 
 In 1829 when A.– M. Ampère was preparing a 
course on general and experimental physics for the Collége 
de France, he felt an understandable need to define and 
subdivide the subject of the course. While doing so he 
realized that the time had come to answer questions that he 
had been asking himself for a long time on human intellect, 
on its development, on the way the true and the false ought 
to be distinguished, on the methods that must be used to 
classify the objects of our knowledge or our knowledge 
itself.   He decided to answer two questions: 

1. What is general physics and by which precise 
characteristic can it be distinguished from the other 
sciences? 

2. Which are the different branches of general 
physics? 

 The answer to the first question was: general 
physics deals with the inorganic properties of bodies in so far 
as they are independent of their use (that is a subject for 
technology) and independent of time, place and climate (this 
separates physics from physical geography).  
 As for the second question Ampère distinguishes 
two different points of view from which one can study the 
object of general physics: the first point of view 
encompasses everything that observation and experience can 
let us know about the inorganic properties of the bodies 
themselves (general elementary physics). The second point 
of view (mathematical physics) concerns the general laws 
that result from the comparison of what we observe, the 
causes and the consequences that we deduce from the laws. 
These two points of view are each once more subdivided in 
two subordinated points of view.  Some of the properties of 
bodies we can observe immediately; others concern what is 
hidden in the bodies, the elements they are made of.  So 
general elementary physics consists of experimental physics 
and chemistry.  In chemistry the properties of the elements 
cannot be immediately observed; we need analysis. 
Mathematical physics is subdivided as well in stereonomy 
(stéréonomie), which deals with the comparative study of the 
means that are used to make experiments as precise as 
possible and the formulae that result from the experiments, 
and the part of mathematical physics that deals with the 
research concerning causes and the laws.  
 

 
 

Ampère, André-Marie (1775 - 1836) 
Artist graphic : Ambroise Tardieu, 1788-1841 

Courtesy of the Dibner Library portrait collection. 
 
 Ampère discovered soon that a similar subdivision 
could be applied to other sciences. In the spring of 1830 he 
succeeded to do this for all cosmological sciences, which 
encompass mathematics, physics and others. Later he saw 
that he could apply a similar principle to the sciences that he 
called noological sciences, the sciences dealing with human 
thought and human societies. The basic idea is the following:   
We divide the knowledge of everything that exists in two 
realms (règnes) on the basis of the characteristics of the 
object that is being studied: cosmological sciences and 
noological sciences.  
 Each of these two is subdivided in four branches 
and the four branches are each subdivided in sixteen first 
order sciences. So we have altogether sixty four first order 
sciences. There are four mathematical first order sciences: 
arithmology, geometry, mechanics and uranology 
(=astronomy). 
 Once we have defined the object of a first order science we  

i) observe it and we collect facts at the surface, 
and we 

ii) find out which facts are hidden under these 
surface facts, 

Moreover, we find out what brings about these facts by 
iii) comparing the observations, classifying them 

and deducing laws from them, and by 
iv) studying the causes and the effects 

 This leads in Ampère’s proposal to four third order 
sciences in mechanics: Two branches of Elementary 
mechanics: kinematics and statics; Two branches of 
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Transcendental mechanics: dynamics and molecular 
mechanics. 
 Molecular mechanics refers to scattered attempts to 
apply the laws of dynamics to molecules and explain in this 
way properties of rigid bodies. By the way in Ampère’s 
proposal Molecular geometry is a science of the third order 
in geometry dealing with crystallography.  
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