
13th National Conference on Mechanisms and Machines (NaCoMM07),
IISc, Bangalore, India. December 12-13, 2007 NaCoMM-2007-66

Design, modeling and controllability of a spherical mobile

robot

Vrunda Joshi1, Ravi Banavar1∗, Rohit Hippalgaonkar2

1 Systems and Control Engineering, Indian Institute of Technology, Bombay, India
2 Department of Mechanical Engineering, Indian Institute of Technology, Bombay, India

∗ Corresponding author (email: banavar@sc.iitb.ac.in)

Abstract

A spherical mobile robot, rolling on a plane with the
help of two internal rotors and working on the principle
of conservation of angular momentum has recently been
fabricated in our group. The robot is a classic example
of a nonholonomic system for which many existing al-
gorithms do not easily apply. The objective is to study
feasible path planning algorithms on this system. In
this paper, we present the design details of the spheri-
cal robot fabricated along with the hardware used. We
use Euler parameters which describe a unit quaternion
for orientation of the robot and develop mathematical
model to avoid singularity problem. We also prove con-
trollability of the system in the quaternion space.
Keywords: Spherical robot, nonholonomic systems,
Euler parameters.

1 Introduction

Mobile robotics is one of the important branches of
robotics. For mobility of the robots, different motions
like rolling, walking, hopping, sliding are used. Rolling
motion has certain advantages over other motions. The
problem of wearing and tearing is very less for the
rolling motion. Also since the systems with rolling are
nonholonomic, the set of configurations is reachable by
lesser number of inputs. The role of friction is also
conservative. For all these reasons, rolling motion is
preferred in most of the cases in mobile robotics. In
this paper, we present a detailed analysis of a spheri-
cal rolling robot. Due to the spherical shape, the robot
recovers from the collisions with an unknown obstacles
which is its intrinsic property. Due to this, it has practi-
cal applications like inspection and surveillance in haz-
ardous environment. Any sensor can be mounted inside
the spherical shell and the robot can be effectively used.
It has an advantage of having one more orientation pa-
rameter as compared to car robots. As compared to
single wheeled robots like gyroscopes [1], the spherical

structure is statically stable. Also it is the classic exam-
ple of a nonholonomic system for which existing path
planning techniques do not apply. For all these fea-
tures, we were interested in study of the robot and an
autonomous spherical mobile robot has been designed
and developed by our group.

A typical construction of the spherical mobile robot
has a spherical shell with some internal driving
unit(IDU) mounted inside the spherical shell. The
robot in [2] is composed of a spherical shell and an arch
shaped body. The driving unit consists of a pendulum
and a controlling arch. The arched body and pendulum
can control the pitch angle and the controlling arch be-
low the pendulum controls the roll angle simultaneously
with the pitch angle. In [3] and [4], the IDU consists of
a wheel rolling inside the spherical shell which is in turn
driven by a motor. The robot moves due to the distur-
bance of the system equilibrium due to unbalance of
the inside construction. The ’Rollo’, a spherical mobile
robot designed and developed by P. Harmo et al.[5], the
IDU is hanging from the rim. The rim can be rotated
around the two axes of the IDU. The spherical shell
rolls according to the movement of the rim. A small
car like structure has been used as IDU in Sphericle
[6]. The car has the unicycle kinematics and is driven
with the help of two stepper motors. All the robots
described up till now work on the principle of change
of center of mass with the help of IDU for rolling the
robot. Rollmob, designed and developed by L. Ferriere
et al.[7] is a spherical ball driven by an universal wheel
equipped with rollers. The rotation of the roller wheel
drives the sphere around the direction parallel to the
wheel axis, while the sphere rotates freely around the
direction perpendicular to this axis. The construction
of the robot designed by Bhattacharya et al.[8] is driven
by a set of two mutually perpendicular rotors, attached
to the spherical shell of the robot from inside. Along
the Z axis there is a single rotor and along X axis there
are two rotors which are rotated in tandem as a sin-
gle rigid connected body. When rotors are rotated, the
spherical robot rolls in the opposite direction due to
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the conservation of angular momentum. GroundBot,
a spherical robot developed by Rotundus is designed
for extraterrestrial exploration. The center of gravity
of this robot is kept close to the ground with the help
of a controlled pendulum. When it is raised, the ball
rolls forward. When the pendulum is moved sideways,
the ball turns. Spherobot, a spherical mobile robot by
Ranjan Mukherji et al.[9] has radial spokes along which
masses are placed. Radial movement of these masses
create a moment about the center causing the motion
of the robot. Cyclops [10] has two degrees of freedom
in its locomotion system. It can pivot in place along
its vertical axis and roll forward and backward along a
fixed horizontal axis via a small motor and gear-head
fixed inside. The review papers discussing construc-
tional details of available Spherical Mobile Robots are
[11, 12]. In this paper, we present a systematic study
of a spherical mobile robot, designed, fabricated and
analyzed in our laboratory. The organization of the pa-
per is as follows. Section 2 describes the construction
and design details of the robot. Section 3 describes the
mathematical modeling of the system using quaternion.
In Section 4 the controllability of the model is analyzed
in the quaternion space. Section 5 provides concluding
remarks.

2 Design

Figure 1: Placing of components in a half shell

The spherical mobile robot designed in our labora-
tory works on the principle of conservation of angular
momentum. The robot has two internal rotors similar
to a few constructions mentioned above. The robot’s
spherical shell is made up of acrylic material having 4
mm thickness. The inner radius of the robot is 30 cm. A
crucial aspect of the design is to place the internal com-
ponents such that the center of mass of the robot is ex-
actly at the geometric center of the sphere. This is very
important so that the robot will not tip over on its own.
The easiest way to achieve this is to place all the parts

symmetrically. As will be seen later, the robot is con-
trollable with only two inputs namely the speeds of the
rotors placed along two mutually perpendicular rotors.
We, therefore, consider two rotors along X and Z axis
of the body frame. These rotors are driven by two D.C
motors MAXON EC φ32, Brushless, 80W . Two bat-
teries of the type Polyquest PQ08003 TWENTY LIPO
PACK of capacity 800mAh each, are used for supply-
ing power to one motor. So in all there are 4 batteries.
There are two speed control units to control the speed
of the motors which receive control signals from the
external controller such as personal computer through
wireless communication. For symmetrically placing the

Figure 2: Construction of the spherical robot

components, the motor along with rotor and one speed
control unit is placed on one side and the battery along
with dead weight is placed on the diametrically oppo-
site direction as shown in Figure 2. Similarly another
pair of motor assembly and battery+dead weight are
placed in diametrically opposite directions. The robot
is fabricated as two hemispheres as shown in Figure
1. Each hemisphere consists of one motor assembly and
one battery+dead weight assembly. It is absolutely crit-
ical that there be no relative motion between the two
hemispheres while in motion. The total weight of the
robot is 3.4 KG.

3 Mathematical Modeling

This section describes the development of an analytical
model of the spherical rolling robot using quaternion.
Consider a spherical robot rolling on a horizontal plane
as shown in the figure (3). An inertial coordinate frame
is attached to the surface and denoted as XY Z with its
origin at a point O. The body coordinate axes xyz are
attached to the sphere and have their origin at the cen-
ter of the sphere G. The set of generalized coordinates
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Figure 3: Sphere rolling on a surface

describing the sphere consists of [13]

• Coordinates of the contact point I on the plane.

• Any set of variables describing the orientation of
the sphere.

We use Euler parameters (instead of Euler angles)
which is a set of 4 parameters to describe the orien-
tation of the sphere. Euler parameters have the advan-
tage of being a nonsingular two to one mapping with
the rotation. In addition, Euler parameters form a unit
quaternion and can be manipulated using quaternion
algebra[14],[15], [16], [17]. Using a set of Euler param-
eters for defining orientation, we get the set of general-
ized coordinates as

p = (x, y, e0, e1, e2, e3)
T ,

where e0, e1, e2 and e3 are the Euler’s parameters de-
scribing orientation forming unit quaternion such that

e20 + e21 + e22 + e23 = 1.

(x, y) are the coordinates of the contact point I. Let
ib, jb, kb be the unit vectors of the body frame and
iI , jI , kI be the unit vectors of the inertial frame. The
inertial axes can be transformed to body axes using[15]





ib
jb
kb



 = 2× T





iI
jI
kI



 , (1)

where
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1

2
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1

2
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 .

If ω is the angular velocity of the sphere given by

ω = ωxib + ωyjb + ωzkb. (2)

The projection of the angular velocity vector on the
body axes can be related to the rate of change of the Eu-
ler parameters w.r.t. time using the relationship given
in [15][18]
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3.1 No Slip Constraint
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Figure 4: Sphere rolling with no slip

During pure rolling process, the sphere moves with-
out slipping. As it rolls, it is assumed to rotate instan-
taneously about the axis passing through the point of
contact I. So the instantaneous velocity of the contact
point I with respect to the inertial coordinates is zero

VI = 0. (4)

We consider the velocity of the center of the sphere as

VG = ẋiI + ẏjI , (5)

VG = VI + ω × r̄, (6)

where r is the radius vector of the sphere from I to G
given by

r̄ = rkI .

From (4),(5),(6) we get

ẋiI + ẏjI = ω × rkI .

Using the expression for ω from (2) and (3) and express-
ing body vectors in terms of inertial vectors using (1)
we get

ẋ+ 2re2ė0 − 2re3ė1 − 2re0ė2 + 2re1ė3 = 0.

ẏ − 2re1ė0 + 2re0ė1 − 2re3ė2 + 2re2ė3 = 0. (7)

For a unit sphere, the no slip constraint equations re-
duce to

ẋ+ 2e2ė0 − 2e3ė1 − 2e0ė2 + 2e1ė3 = 0.

ẏ − 2e1ė0 + 2e0ė1 − 2e3ė2 + 2e2ė3 = 0. (8)

3.2 First order model of the sphere

rolling on a plane

We assume the sphere to have unit radius without any
loss of generality. If angular velocities of the sphere
about body co-ordinate axes are ωx, ωy, ωz, then the
equations (3) and (8) describe the kinematics of the
sphere fully giving a set of state equations as
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ė1
ė2
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ωz, (9)
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where

Q =

















1 0 2e2 −2e3 −2e0 2e1
0 1 −2e1 2e0 −2e3 2e2
0 0 2e0 2e1 2e2 2e3
0 0 −2e1 2e0 2e3 −2e2
0 0 −2e2 −2e3 2e0 2e1
0 0 −2e3 2e2 −2e1 2e0

















.

It can be shown that the matrix Q is an orthogonal ma-
trix and hence is invertible. The internal rotors (which
are actuators for the robot) are located along X and Z
axis of the body frame. The robot is symmetric in con-
struction and we therefore consider ωy = 0, reducing
the system equations from (9) to

ṗ = X1(p)ωx +X2(p)ωz, (10)

where

p =
[

x y e0 e1 e2 e3
]T
. (11)

X1(p) = Q−1

















0
0
0
0
0
1

















=

















2(e0e3 + e2e1)
(e23 + e22 − e

2
0 − e

2
1)

− 1

2
e1

1

2
e0

1

2
e3

− 1

2
e2

















.
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.

3.3 Conservation of angular momentum

As shown in Figure 2, the construction of the robot is
symmetrical. The gravitational force therefore passes
through the center of the sphere G. Reaction force also
passes though G as the point is exactly above the point
of contact I. Since there exist no dissipative frictional
forces, the sum of external moments at the point G
are zero. The angular momentum at the center of the
sphere therefore is a conserved quantity, giving

ḢG = 0.

We further assume that the sphere starts at rest giving

HG(t0) = 0 ⇒ HG(t) = 0, ∀ t ≥ t0.

We introduce two new variables ψ1 and ψ2 for the rotor
angles of X and Z rotor respectively. The sphere is
assumed to be symmetrical in construction about the
body axes resulting in diagonal inertia matrices for the
sphere shell as well as for X rotor and Z rotor. Let Is,
Jx and Jz be the inertia matrices of the sphere, the X
rotor and the Z rotor respectively with respect to the

body axes given by

Is =





Is
xx 0 0
0 Is

yy 0
0 0 Is

zz



 ,

Jx =





Jx
xx 0 0
0 Jx

yy 0
0 0 Jx

zz



 ,

Jz =





Jz
xx 0 0
0 Jz

yy 0
0 0 Jz

zz



 .

The angular momentum at G can be written as

HG = (Ixωx)ib + (Iyωy)jb + (Izωz)kb

+Jx
xx(ωx + ψ̇1)ib + Jz

zz(ωz + ψ̇2)kb = 0, (12)

where

Ix
4
= Is

xx + Jz
xx.

Iy
4
= Is

yy + Jx
yy + Jz

yy.

Iz
4
= Is

zz + Jx
zz.

The inputs for the kinematic model which are compo-
nents of the angular velocity vector in the body frame
are related to the rotor speeds ψ̇1 and ψ̇2 by the relation
of the conservation of angular momentum (12).

3.4 Properties of the model

3.4.1 Controllability

Before we proceed to path planning of the spherical
robot, it is essential to check whether there exists a
path that connects any arbitrary configurations of the
sphere. The question can be answered using a result
known as the Chow’s Theorem[19]. In this section, we
use the algorithm given in [20] to answer the question.
Consider the system described by the equation (10).

ṗ = X1(p)ωx +X2(p)ωy,

where p, X1(p) and X2(p) are given by (11). We com-
pute the following Lie Brackets using a Philip Hall con-
vention [19], [20]

X3(p) = [X1, X2].

X4(p) = [X1, X3].

X5(p) = [X2, X3].

X6(p) = [X1, X4].

A distribution is formed using the above generated Lie
Bracket vector fields given by

∆ = [X1, X2, X3, X4, X5, X6],
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where

X3 =
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.

It can be observed that all higher order brackets can
be expressed in terms of X1, X2, X3, X4, X5 giving the
rank of the distribution as 5. As the Euler parameters
are used, the number of the state variables is 6. We are
using a system of 4 parameters to describe the orienta-
tion. But all possible orientations lie on a hyper surface
defined by a level set

e20 + e21 + e22 + e23 = 1, (14)

which is a 3 sphere. This gives the dimension of the
configuration space as 5 which is equal to the rank of the
distribution. So using Chow’s Theorem the system is
controllable and can be taken from any position to any
arbitrary position using Lie Bracket motions described
by the vector fields (13).

3.4.2 Nilpotency

It can be observed that higher order Lie products are
not zero so the system is not nilpotent.

3.5 Conversion into a chained form

For determining the degree of nonholonomy, we con-
struct a distribution associated with the control system
(10) as

∆ = span{X1, X2}.

We then construct filtrations associated with the distri-
bution ∆ as

E0 = ∆, F0 = ∆,

E1 = E0 + [E0, E0], F1 = F0 + [F0, F0],

E2 = E1 + [E1, E1], F2 = F1 + [F1, F0],

E3 = E2 + [E2, E2], F3 = F2 + [F2, F0],

E4 = E3 + [E3, E3], F2 = F3 + [F3, F0].

According to [21], a feedback transformation which puts
a driftless two input nonholonomic system 9 into a
chained form exists if and only if

dim(Ei) = dim(Fi) = i+ 2; i = 0, . . . , n− 2. (15)

In this particular case

For i = 0, dim(F0) = 2,

For i = 1, dim(F1) = 3,

For i = 2, dim(F2) = 5 6= i+ 2,

For i = 3, dim(F3) = 5,

It can be observed that the condition (15) is not satisfied
and it is not possible to convert the model into a chained
form.

3.6 The degree of nonholonomy and

growth vector

It can be observed from the way the filterations grow
that the degree of nonholonomy of the system is 3 with
the growth vector (2, 3, 5) and the relative growth vector
(2, 1, 2).

4 Conclusion

Design and constructional features of a spherical mo-
bile robot rolling on a plane are presented in this pa-
per. Kinematic model of the system is developed us-
ing quaternion for description of the orientation of the
robot. It can be observed that the model is nonsin-
gular and valid everywhere. It is shown that the sys-
tem is fully controllable and can be taken from any
arbitrary configuration to any arbitrary configuration
within unit 3-sphere in the quaternion space. The sys-
tem is nonholonomic with the degree of nonholonomy 3
and growth vector (2, 3, 5). It is not nilpotent and also
can not be converted into ‘a chained form’. It, there-
fore represents a class of systems for which all existing
path planning techniques fail to apply. Dedicated path
planning techniques can be developed using quaternion
model developed which is future scope of our research.
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