
13th National Conference on Mechanisms and Machines (NaCoMM07),
IISc, Bangalore, India, December 12-13, 2007 NaCoMM-2007-072

 297

Intelligent Modular Controller for Robotic Machines

Yogesh Kumar1*, Dr. S.K. Srivastava2, and Dr. A.K. Bajpai3,

1M.Tech. Student, 2Assistant Professor, 3Professor,
Department of Mechanical Engineering,

Madan Mohan Malaviya Engineering College,
Gorakhpur (U.P.) -273 010, India.

* Corresponding author (email: cim.gkp@gmail.com)

Abstract

The present work is focused on the design and imple-
mentation of an Intelligent Modular Controller (IMC) ar-
chitecture designed to be reconfigurable over a robust net-
work. The design incorporates novel communication,
hardware, and software architectures. This was motivated
by current industrial needs for distributed control systems.
It incorporates the growing demand for less complexity,
more processing power, flexibility, and greater fault toler-
ances.

This paper demonstrates hardware/software co-design
as a contribution to the growing discipline of mechatronics.
The IMC consists of a motion controller board designed
and prototyped in-house, and a Java microcontroller.

An IMC is mapped to each machine/robot axis. An
additional IMC can be configured to serve as a real-time
coordinator. The entire architecture is implemented in Java.
The results show the potential of the flexible controller to
meet medium to high performance machining require-
ments such as surface finish, precision improvement etc.

Keywords: Robot, Intelligent Machines, Mechatronics,
Hardware Interfacing.

1. Introduction

The paper presents the design of an intelligent modu-

lar reconfigurable controller for machine tools. The design
breaks new ground by incorporating embedded technology
using commercial-off-the-shelf (COTS) components, flexi-
ble architectural design patterns based on object-oriented
technology, plug-and-play, and web-design into a distrib-
uted control system. The treatise takes a tour through the
different design stages from concepts to production, and
also gives a rich background of the related state-of-the-art.
Experimental results and future research directions wrap
up the main paper body.

2. Problem formulation and Objective

The Mechatronics approach for the design of modern

control systems inevitably involves embedded technology.
This approach is gaining a lot of attention due to the grow-

ing demand for distributed real-time systems. Indeed, the
gradual paradigm shift from centralized systems is justi-
fied in many ways. The most compelling reasons are the
needs for less complexity, more processing power, flexi-
bility, and greater fault-tolerance. A typical distributed
control system (DCS) consists of several processing nodes
connected by a communication network. The network pre-
sents a duo of both convenience of connectivity, and in-
convenience of dealing with real-time situations. Designs
based on such systems have limited flexibility in terms of
scalability, unlike serial communication systems where a
few serial lines could connect many elements. The objec-
tive of the present work is:

1. A generic framework for modular reconfigurable
control architecture. The framework addresses
software and hardware requirements, and also the
communication structure.

2. A small and simple design that fits into embedded
low-cost platforms.

3. A working prototype of the architecture.
4. An operational software architecture based on

modularity and reusability.

3. Robot Control Architecture Design
Concepts and Review

Robot control architecture involves several different
notions and implications, particularly architectural styles
and structures. Architectural structure shows how a system
is decomposed into the subsystems, and how the subsys-
tems interact to each other. The computation and commu-
nication underpinnings of a given system invariably reflect
a style. For example, one system might use a publish-
subscribe message passing style of communication, while
another may use a more synchronous client-server ap-
proach. Most often the holistic architecture is realized only
at the working stage. This is unfortunate, since a well-
conceived architecture can have many advantages in the
specification, execution, and validation of robot systems.
This helps in developing a robot control architecture
framework. Generally, a framework refers to the structure
external to an architecture which organizes information
about the architecture and its application [3].

13th National Conference on Mechanisms and Machines (NaCoMM07),
IISc, Bangalore, India, December 12-13, 2007 NaCoMM-2007-72

 298

3.1 Architectural Properties

The architectural style employed has a direct impact

on the performance of the overall system. For example, the
pipe-and-filter software style supports components reus-
ability and configurability of the application by applying
generality to its component interfaces. However, compo-
nents are constrained to a single interface type. The desired
architecture properties are dealing with complexity, execu-
tion, openness, performance, scalability, simplicity, modi-
fiability, portability and reliability [5].

3.2 Software Architecture Styles

A software architecture is an abstraction of the run-

time behavior of a software system during some phase of
its operation. The architecture of a software system defines
that system in terms of components and of interactions
among those components [5].

3.3 Controller Hardware Architecture

Hardware architectures usually emphasize the compu-

tation platforms, their interfaces, and interconnections. In
effect the hardware architecture should help readers to
understand the underlying execution mechanics and data-
flow through different execution stages. The Controller
hardware architecture is evaluated on the basis of:

1. Throughput (speed)
2. Communication between modules
3. Functional coherence
4. Robustness
5. Hardware Modularity

The following controller hardware architectures are

already available for the present study:

1. Open Modular Architecture Controller (OMAC)

API
2. UBC Open Architecture Control System
3. NRC Tripod
4. CLARAty (Coupled Layered Architecture for

Robotic Autonomy)Architecture

3.4 Control Architectures

A control architecture refers to the actual operational

software used to run a machine (e.g. robot), and may also
include intelligence to handle interactions with the envi-
ronment or system, and optimization procedures necessary
to enhance performance. This section reviews some well-
known control strategies and some new paradigms in sys-
tem-level control reconfiguration.

3.4.1 Classic Control

Robot control for contour following operations can be
classified into gross motion control and fine motion con-
trol. The classification of robot control is given in the Fig-
ure 1. In gross motion control, an end-effecter or machine
tool follows a prescribed path as closely and as quickly as

possible; the task is to find a control law that governs its
velocity and position. On the contrary, in fine motion con-
trol, the objective is to control position and force simulta-
neously by a technique called hybrid control. Gross motion
control may be implemented in joint or Cartesian space
depending on whether the desired path is specified in the
joints or Cartesian space. Fine motion control may be pas-
sive or active compliance control. The former may be
achieved through Remote Compliance Center devices to
compensate for disturbances. In active compliance control,
there is force (torque) feedback to correct errors [4].

Figure 1: Classification of Robot Control

3.4.2 Reconfigurable Control Architectures

Generally, there are two issues regarding reconfigura-

tion: Distributed system reconfiguration and Control re-
configuration. The former is related to a structural or sys-
tem-level software reconfiguration while the latter deals
with modifying control law in its structure to maintain a
certain performance. Reconfigurable control for fault tol-
erance is an exceptionally challenging control design prob-
lem. Failure detection and identification, parameter estima-
tion and controller redesign have to be carried out on-line
and completed within tight time boundaries. Some meth-
ods that address reconfigurable control include linear-
quadratic (LQ) control methodology, adaptive control sys-
tems, knowledge-based systems, and Eigen-structure as-
signments. Considering adaptive control, there are several
approaches but in general perspective control reconfigura-
tion is attempted by using a continually adapting nonlinear
model. At this point we make a distinction between fault-
tolerance, robust control, and reconfiguration control
strategies. In the first situation, when a fault appears in one
peripheral element and the plant is still observable and
controllable, the controller uses a fault accommodation
strategy to achieve its original objectives by adapting con-
trol parameters to fault conditions [4].

A robust controller (also called adaptive controller in
some literature) aims at providing suitable system per-
formance if the parameters and conditions vary within
given domains. Parameters and conditions include uncer-
tainties in the mathematical model of the plant, and strong
non-linear interconnections (e.g., between the joints of a
robot); for distributed systems, robust controllers accom-
modate network-induced jitters and sometimes computa-
tion delays [7].

Robot Control

Fine motion control
(Hybrid, compliance

Gross motion control
(Trajectory control)

Joint
Space

Control

Cartesian
space

control

Passive
compliance

control

Active
compliance

control

13th National Conference on Mechanisms and Machines (NaCoMM07),
IISc, Bangalore, India, December 12-13, 2007 NaCoMM-2007-72

 299

4. Intelligent Modular Controller
(IMC) Architecture

Each axis controller (IMC) is designed such that there
is minimal need for global data interchange. Therefore
most hard real-time functions are confined within the IMC
domain. Each IMC communicates with the central coordi-
nator through a network while communication with the
mechanical axis is through an embedded motion controller
and a set of I/O signals. The IMC architecture allows a
completely distributed or a hierarchical architectural struc-
ture in order to accommodate different demands imposed
by higher application layers.

Another feature of the IMCs is the ability for any one
of them or an additional IMC to serve as a real-time coor-
dinator. This is especially important in two different appli-
cations: The first is the situation where the global work-
station or computer which hosts most of the higher layer
application software runs on a non real-time operating
system (OS). While many functions such as path- plan-
ning and NC program parsing may be abstracted from non
real-time computing, real- time transactions are a necessity
for coordinating coarse or finely interpolated data. The
architecture allows an IMC to be selected for this purpose.
In this case, the IMC is relieved of its motion control ac-
tivities in order to conserve computing resources for real-
time coordination. The architecture, therefore, does not
predispose the user to any particular operating system
which is a key advantage.

The other interesting feature of the IMC architecture
is that they are designed from the onset to be embedded
mobile computing elements. This provides the ability for
them to be integrated or embedded in the mechanical plat-
form. The concept can therefore be used to control mobile
equipment such as AGVs or mobile robots. There are a
few architectural permutations that can address such situa-
tions: One arrangement is to have one IMC inside each
host mechanical axis; another variation is to map several
motion controllers to one IMC microcontroller.

4.1 Java for Real-time System Design

The Java Virtual Machine (JVM) loads, verifies and
executes the byte code of a Java program. Execution speed
is hindered by interpreting byte codes, and this has been
one of the setbacks of Java in real-time applications until
recently. One solution to this problem is a JVM with a
just- in-time (JIT) compiler designed for desktop and
server systems. However these require large memory foot-
prints and have to be ported for different processor archi-
tectures.

An excellent candidate for real-time embedded system
designs is a Java processor (hardware) that implements the
JVM as a native machine. This avoids the slow execution
model of an interpreting JVM and the memory require-
ments of a compiler, thus making it suitable for embedded
systems. There are two approaches to Java bytecode exe-
cution by hardware. In the first approach, a Java coproces-
sor is placed in the instruction fetch path of a general pur-
pose microprocessor and translates Java bytecodes to se-
quences of instructions for the host CPU or directly exe-

cutes basic Java bytecodes. In the second approach, a Java
chip replaces the general purpose CPU. All applications
therefore have to be written in Java.

4.2 Microcontroller Hardware Selection

The criteria for the selection of an appropriate
computing platform are as follows:

1. The hardware must be capable of supporting at
least 60 MHz of computing with 2 Mbytes of
storage space.

2. The underlying operating system must be capable
of multi-tasking synchronously and/or asynchro-
nously.

3. There should be provision for a real-time serial
bus and bi-directional Ethernet.

4. Computing platform based on Java.
5. There should be an appreciable number of in-

put/output pins for digital or analog interfacing,
serial and parallel interfacing.

Even though there is a wide variety of processing plat-

forms available, but many of them do not meet the afore-
mentioned requirements of an embedded technology with
native support for real-time, object-oriented programming
and communication network. For this reason, we selected
the aJile microprocessor (see Table.1). The chipset is only
US$25 (2004 price). The next section gives a brief descrip-
tion of the processor with emphasis on the features of in-
terest to us.

Table 1: Micro-Controller Chips
Product Type Chip

Technol-
ogy

Speed
(MHz)

Java Stan-
dard

JIFFY Translation FPGA

Jazelle Co-
Processor

ASIC 0.18
µs

200

ZSTAR Co-
Processor

ASIC 0.18
µs

104 J2ME CLDC

picoJava Processor Full

aJile Processor ASIC 0.25
µs

103 J2ME CLDC

Cjip Processor ASIC 0.25
µs

67 J2ME CLDC

Komodo Processor 2600 LCs 20 subset

4.2.1 The aJile Processor

The aJile architecture uses JEM2 as a direct-execution
Java processor that is available as both an IP core and a
stand alone processor (aJ-100, 2001).The data path is made
up of a 32-bit ALU, a 32-bit barrel shifter and the support
for floating point operations (disassembly/assembly, over-
flow and NaN detection). The control memory is a 4K by
56 ROM to hold the microcode that implements the Java
bytecode. An additional RAM can be used for custom mi-
crocode to implement new instructions. The aJile inventors
report that this feature can increase the efficiency of fre-
quently used algorithms by 5–50 times by decreasing exe-
cution overheads. This feature is also used to implement
basic synchronization and thread scheduling routines in
microcode to yield context- switching of 1 µs. A Multiple
JVM Manager (MJM) supports two independent, memory

13th National Conference on Mechanisms and Machines (NaCoMM07),
IISc, Bangalore, India, December 12-13, 2007 NaCoMM-2007-72

 300

protected JVMs, which can execute with a deterministic
schedule and full memory protection (Figure 2) [1].

Figure 2: The aJile JEM2 Processor [1]

Currently, there are two silicon versions of JEM2 mi-

crocontrollers: the aJ-80 and the aJ-100. The aJ-100 shown
in Figure 3 (aJ-100, 2001), provides a generic 8-bit, 16-bit
or 32-bit external bus interface and can be clocked up to
103 MHz, while the 66-MHz aJ-80 only provides an 8-bit
interface. Both versions are made up of the JEM2 core, the
MJM, 48-KB zero wait state RAM and peripheral compo-
nents, such as timers, I/O’s, a real- time serial communica-
tion bus (SIP) and UART. 16KB of the RAM is used for
the writable control store and 32 KB for storage of the
processor stack. Both microprocessors are bundled with
J2ME-CLDC Java runtime system, optimizing application
builder, and a very basic debugging tool. Complete im-
plementations for real-time networked embedded Java
applications are available (aJ-100, 2001 and Systronix,
2003) [1].

Figure 3: aJ-100 Architecture [1]

4.2.2 The JStick Platform

Systronix Inc. (2003) produces about five different
boards with the aJile microprocessor. Their JStick micro-
controller meets most of our preferences such as small
form factor, I/O input/output) interfaces, and network sup-
port. JStick is a Single Board Computer (SBC) with a
SIMM30 (Single In-Line Memory Module) format. It fea-
tures a host of facilities to provide most controller func-
tionalities. The following is summary of the portfolio of
this device [2]:

1. Processor: aJ100 (100 MHz).
2. Memory: 2-Mbytes SRAM and 4-Mbytes flash.

3. Power: switching power converters which pro-
vide 5 V and 3.3 V for peripheral devices.

4. Power supply: unregulated DC of 9-14 volts or
regulated DC power of 5V.

5. Communication: serial I/O, 10BaseT Ethernet
(including the RJ45 jack).

6. Bus Interface: A high speed I/O expansion bus.
7. Real-time network: SPI (Serial Peripheral Inter-

face).
8. Multiple timers, counters, PWM, interrupt inputs,

etc.

4.3 Motion Controller Hardware

A motion controller is the most important element in a
motion control system. Next to choosing a proper motor,
the selection or design of a motion controller is the de-
signer’s most important decision. The fundamental func-
tion of a controller is to compare two signals: the com-
mand signal from the microprocessor and the position
feedback signal from an encoder, resolver or tachometer.
The position feedback signal is subtracted from the refer-
ence position to provide a following error which is con-
verted by a digital-to-analog converter (DAC) to analog
voltage for the servo amplifier. The controller’s prime duty
is to minimize the position error without causing system
instability. With an appropriate motion controller in place,
the designer can focus on stabilizing and programming the
system.

4.3.1 Motion Controller Design Options

The decision to select an appropriate motion control
scheme depended on a number of factors. The options con-
sidered are as follows;

1. JStick as stand-alone motion controller.
2. Use auxiliary hardware in conjunction with JStick

for motion control.
3. COTS motion controller board; Interface an off-

the-shelf motion control board to JStick.
4. COTS motion control chip; design a motion con-

troller board based on a COTS motion control
chip.

4.3.2 Motion Controller Board Design Criteria

The following features were considered for the motion
controller board design:

1. A programmable motion controller chip with a
compensator (at least a PID filter), a sampling
rate of at least 1 KHz for high performance (Bel-
lini et al., 2003), motion profiling, quadrature de-
coding and a real-time means of populating an in-
tegrated buffer with motion set-points from the
JStick host. The chip should also be capable of
providing encoder readings to allow monitoring
or adaptive control.

2. A Digital to Analog (DAC) chip, which easily in-
terfaces with the motion control chip and pro-
vides at least a 12-bit resolution and a voltage
output range of +/- 10 V. It is worth noting here

13th National Conference on Mechanisms and Machines (NaCoMM07),
IISc, Bangalore, India, December 12-13, 2007 NaCoMM-2007-72

 301

that the chip timing parameters should be com-
patible with that of the motion control chip.

3. An encoder receiver chip (if the motion controller
needs one) and circuitry for filtering out noise.
Encoder signals are very susceptible to noise, es-
pecially single line encoders. This is compounded
by long transmission lines and the use of rela-
tively cheap encoder technology like totem-pole
and open-collector types.

4. Digital I/O with interrupts for enable-signal on
motor driver (amplifier) and mechanical switches
such as limit and home position switches.

5. Logic chips such as flip-flops for buffering sig-
nals and signal inverters.

6. Power converter chip for devices requiring power
levels which are unavailable on the JStick.

4.4 Motion Controller Chip Selection

There are a number of commercial motion controller
chips on the market. A few of these were identified as po-
tential candidates for the motion controller board design.
The National Semiconductor’s LM628 (LM628/LM629,
2003) was eventually selected based on the criteria out-
lined above, including its low price, simplicity, and proven
capabilities.

5. Motion Controller Board Design

This section focuses on the hardware design of the
motion controller board for the IMC node. The schematic
of the board is shown in Figure 4. The hardware architec-
ture is a multi-tier system with independent controllers for
each joint of the robot.

Figure 4: Peripheral Motion Controller Board Architecture

5.1 JStick’s Peripheral Interface Signals

In order to interface this board with peripheral I/O de-
vices, JStick uses a synchronous, memory-mapped High
Speed I/O Interface (HSIO). The HSIO provides byte-wide
(8-bit) data, twelve address bits, read and write strobes,
two chip selects, 3.3 VDC power and ground. More chip
selects can be easily decoded from the 12-bit address.
HSIO signals interface directly to 3.3V TTL and CMOS or
5V TTL devices (Systronix, 2001). In order to configure
the HSIO for a peripheral device one needs to properly
select timing parameters to match the timing specifications
of the peripheral device. Fortunately, the bus timing can be

varied to support most peripheral speeds. The bus timing is
controlled by three features; a Phase Locked Loop (PLL),
the aJile CPU external bus interface settings and the HSIO
memory mapped address bits [2].

5.2 Clocking

The hardware architecture provides two means of
clocking the LM628 chip; static clocking and dynamic
clocking. There is an onboard 6 MHz clock which pro-
vides very accurate clocking for the chip. The clock can be
enabled or disabled in software but the output frequency is
fixed.

5.3 LM628 DAC Output

The LM628 precision motion controller outputs data

to a DAC (Digital to Analog Converter) on its ports
DAC0-DAC7. Its output port can be configured for either
a latched 8-bit parallel output or a multiplexed 12-bit out-
put. While the 8-bit output can be directly connected to
non-input-latching DAC (Digital to Analog Converter), the
12-bit output has to be demultiplexed using an external 6-
bit latch. The IMC motion controller board uses the 12-bit
output mode for better resolution.

5.4 Servlet Technology

Servlets are reusable Java applications which run on
response/request-oriented web server. The server loads and
executes the servlets, which accept zero or more requests
from clients and return data to them. Functionally, they
are similar to CGI scripts, but more platform-independent.
A few of the many applications of servlets include the fol-
lowing;

1. Servlets can process data posted over Https using an

HTML form.
2. Servlets can accommodate multiple requests concur-

rently to allow collaboration between multiple users.

Servlets can forward requests to other servers and
servlets in order to balance load among servers or partition
a single logical service over several servlets.

6. Results

System evaluation (and fine-tuning) is a very broad
exercise which could pass for another major research pro-
jects. Distributed reconfigurable controller is evaluated
based on the following criteria:

1. Sampling Time and Communication Latency
2. Block Processing Time and Real-Timeliness
3. Synchronicity
4. Positioning Accuracy
5. Architectural Flexibility.

13th National Conference on Mechanisms and Machines (NaCoMM07),
IISc, Bangalore, India, December 12-13, 2007 NaCoMM-2007-72

 302

6.1 Sampling Time and Communication La-
tency

The PID motion controller chip (LM628) on the IMC
performs high speed trajectory generation (including ramp-
ing and slewing) at a maximum sampling speed of 341µs.
For jitter and processing time, the maximum latency is
approximately 4 µs.

6.2 Block Processing Time and Real-
Timeliness

The interpolator runs on a computing platform
(JStick) dedicated for real-time coordination. The JStick
platform executes real-time threads in a cyclic determinis-
tic manner. Thread context switch takes only 1 µs, thereby
providing acceptable real-time outputs. ISO G-code pro-
grams are loaded to the interpolator’s flash memory by
Ethernet from a GUI program running on a regular PC.
The JStick’s flash speed is 90 ns and its execution speed is
15 Mega bytecodes/s. To measure the average block proc-
essing speed, G1 and G2 codes are executed on the plat-
form. An average time of 1.5 ms is obtained for 3-axis
linear interpolation, and 2.0 ms for 2-axis circular interpo-
lation. However, the block processing time is constrained
by the hardware limitation of the motion controller chip to
10 ms as mentioned in the previous section.

6.3 Synchronicity

Synchronization is a critical issue with decentralized
controllers. The worst case delay, as shown in Figure 5 is
about 1 ms, and over 20% of the data fell in this region. In
the next, the clock Synchronization scheme developed for
the architecture is implemented. The worst case delay fell
appreciably to 0.1 ms (Figure 6). For even finer synchroni-
zation, the real-time coordinator is hardwired to the IMC
controllers by an interrupt line. The delay results are illus-
trated in figure 7. Delays are highly repeatable in this case.
This illustrates the versatility of the architecture.

.

Figure 5: Timing Variations-Uncompensated Delays

Figure 6: Timing Variations- Compensated Delays

Figure 7: Timing Variation- Synchronization by Interrupts

6.4 Positioning Accuracy

Some position measurements are presented below to illus-
trate the performance of the controller on a 3-axis machine.
Figure 8 shows a zigzag pattern move realized with a feed-
rate of 900 mm/s. Figure 9 illustrates circular interpolation
with a feed-rate of 350 mm/s and a radius of 5 mm (1440
counts). The trajectory errors associated with a 1-mm ra-
dius (288 counts), 5-mm radius and 25-mm radius circular
paths are shown in figure 10 to 12. The error patterns are
very similar and bound by a maximum of about 11 counts.
Two linear and one circular interpolations followed by
another linear interpolation are executed in one trajectory
path in Figure 13.

Figure 8: Linear Trajectory

13th National Conference on Mechanisms and Machines (NaCoMM07),
IISc, Bangalore, India, December 12-13, 2007 NaCoMM-2007-72

 303

Figure 9: Circular Trajectory – 5-mm radius

Figure 10: Radial Error – 1-mm radius

Figure 11: Radial Error – 5-mm radius

Figure 12: Radial Error – 25-mm radius

The error patterns are very similar and bound by a

maximum of about 11 counts. Dry friction in the mechani-
cal drives and interpolation approximations contribute
significantly to these errors. Blended moves are also very
acceptable. In Figure 13, two linear and one circular inter-
polations followed by another linear interpolation are exe-
cuted in one trajectory path.

Figure 13: Combined Linear and Circular Paths

6.5 Architectural Flexibility

By virtue of the intelligent communication protocols
and the modular nature of our hardware and software ar-
chitecture, flexibility is greatly enhanced. When machine
(or workstation) configurations such as the number of axes
need to be scaled, control modules are added to the net-
work to match the number of axes. The protocols auto-
matically configure the network for such changes. The
modular nature of the software architecture makes it easy
to add modules to accommodate changes. For example,
through software interfacing new algorithms for kinemat-
ics or interpolation can be readily integrated. Figure 14
illustrates the simulation of the guide (slider) movements
of a parallel kinematic mechanism on a 3-axis table.

Figure 14: Tripod Slider Displacements

7. Conclusion:

The main contributions of the present work are as fol-
lows:

1. An Ethernet-based real-time communication ar-
chitecture with implicit clock synchronization.
The technology also enables the controller sub-
component design to incorporate embedded web-
servers for remote monitoring and system con-
figuration.

2. The development and demonstration of a protocol
for automatic configuration (i.e., PnP) of control-
lers and other embedded shop floor devices.

3. The design and implementation of a medium-
performance flexible controller incorporating the
above on a homogenous Java software and hard-
ware processor environment.

13th National Conference on Mechanisms and Machines (NaCoMM07),
IISc, Bangalore, India, December 12-13, 2007 NaCoMM-2007-72

 304

Table 2: Performance Evaluation Results

Evaluation Criteria Value
Maximum servo loop
cycle

341 µs

Communication la-
tency

4 µs

Block Processing 3-axis linear interpolation
2-axis circular interpolation

Synchronicity Synchronization through net-
work: maximum jitter = 1µs.
Synchronization by interrupt
line: maximum jitter = 30 µs

Positional Accuracy Max. radial error on 25 mm
circle: 0.03 mm (BLU = 0.003
mm)

Architectural flexibil-
ity

Easy to add/remove axis
Quick adaptation to different
mechanical platforms.

References:

[1] aJile-100TM Manual version 2.1, aJile Systems, Inc., 6
December, 2001.

[2] JStick (Real-time Native JavaTM Network Module),
Systronix®, 939 Edison Street, Salt Lake City, Utah, USA
84111, www.systronix.com, www.jstick.com.

[3] Rodney Atta-Konadu, Sherman Y. T. Lang, Chris
Zhang and Peter Orban, “Design of a Robot Control Archi-
tecture”, Proceedings of the IEEE International Confer-
ence on Mechatronics & Automation Niagara Falls, Can-
ada, July 2005, pp:1363-1368.

[4] Birla S., D. Faulker, J. Michaloski, S. Sorenson, G.
Weinert and J. Yen, “Reconfigurable Machine Controllers
using the OMAC API”, Proceedings of the CIRP 1st Inter-
national Conference on Reconfigurable Manufacturing ,
Ann Arbor, MI - May 01, 2001.

[5] Eve Coste-Maniere, and Reid Simmons, “Architecture,
the Backbone of Robotic Systems”, Proceedings of the
2000 IEEE International Conference on Robotics &
Automation San Francisco, CA, volume 1, April 2000, pp:
67-72.

[6] Divelbiss A. W. and J. T. Wen, “A Path Space Ap-
proach to Nonholonomic Motion Planning in the Presence
of Obstacles”, IEEE Transactions on Robotics and Auto-
mation, Vol. 13, No. 3, June 1997, pp. 443-51.

[7] Feng-Li L., J. R. Moyne and D. M. Tilbury, “Imple-
mentation of Networked Machine Tools in Reconfigurable
Manufacturing Systems”, Proceedings of the 2000 Japan-
USA Symposium on Flexible Automation, Ann Arbor, MI,
July 2000.

[8] Guttman E., “Autoconfiguration for IP Networking:
Enabling Local Communication”, IEEE Internet Comput-
ing, May-June 2001, pp. 81-88.

[9] Keum-Shik Hong, Jeom-Goo Kim, Chang-Do Huh,
Kyung-Hyun Choi, and Suk Lee, “A PC-Based Open Ro-
bot Control System: PC-ORC”, Robotics and Computer
Integrated Manufacturing 17 (2001) 1901–1906.

[10] James J. and McClain R., “Tools and Techniques for
Evaluating Control Architecture”, Proceedings of the 1999
IEEE International Symposium on Computer Aided Con-
trol System Design, Kohala Coast-Island of Hawai’i, Ha-
wai’i, USA, August 22-27, 1999.

[11] Mitch Pryor, Chetan Kapoor, Rich Hooper, and
Delbert Tesar, “A Reusable Software Architecture for
Manual Controller Integration”, Proceedings of the 1997
IEEE international Conference on Robotics and Automa-
tion Albuquerque, New Mexico - April 1997, pp: 3583-
3588.

[12] Kim K. H., Im C. and Prasad A., “Realization of a
Distributed OS Component for Internal Clock Synchroni-
zation in a LAN Environment”, Proceedings of the 5th
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, Washington, D.C., April.
2002, pp. 263-270.

[13] Lee C. J. and C. Mavroidis, PC-Based Control of Ro-
botic and Mechatronic Systems Under MS-Windows NT
Workstation” IEE/ASME Transactions on Mechatronics,
Vol. 6, No. 3, 2001, pp. 311-321.

