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Abstract 
 

The present work is focused on the design and imple-
mentation of an Intelligent Modular Controller (IMC) ar-
chitecture designed to be reconfigurable over a robust net-
work. The design incorporates novel communication, 
hardware, and software architectures. This was motivated 
by current industrial needs for distributed control systems. 
It incorporates the growing demand for less complexity, 
more processing power, flexibility, and greater fault toler-
ances. 

This paper demonstrates hardware/software co-design 
as a contribution to the growing discipline of mechatronics. 
The IMC consists of a motion controller board designed 
and prototyped in-house, and a Java microcontroller. 

An IMC is mapped to each machine/robot axis. An 
additional IMC can be configured to serve as a real-time 
coordinator. The entire architecture is implemented in Java. 
The results show the potential of the flexible controller to 
meet medium to high performance machining require-
ments such as surface finish, precision improvement etc. 
 
Keywords: Robot, Intelligent Machines, Mechatronics, 
Hardware Interfacing. 
 
1. Introduction 

 
The paper presents the design of an intelligent modu-

lar reconfigurable controller for machine tools. The design 
breaks new ground by incorporating embedded technology 
using commercial-off-the-shelf (COTS) components, flexi-
ble architectural design patterns based on object-oriented 
technology, plug-and-play, and web-design into a distrib-
uted control system. The treatise takes a tour through the 
different design stages from concepts to production, and 
also gives a rich background of the related state-of-the-art. 
Experimental results and future research directions wrap 
up the main paper body. 
 
2. Problem formulation and Objective 

 
The Mechatronics approach for the design of modern 

control systems inevitably involves embedded technology. 
This approach is gaining a lot of attention due to the grow-

ing demand for distributed real-time systems. Indeed, the 
gradual paradigm shift from centralized systems is justi-
fied in many ways. The most compelling reasons are the 
needs for less complexity, more processing power, flexi-
bility, and greater fault-tolerance. A typical distributed 
control system (DCS) consists of several processing nodes 
connected by a communication network. The network pre-
sents a duo of both convenience of connectivity, and in-
convenience of dealing with real-time situations. Designs 
based on such systems have limited flexibility in terms of 
scalability, unlike serial communication systems where a 
few serial lines could connect many elements. The objec-
tive of the present work is: 

1. A generic framework for modular reconfigurable 
control architecture. The framework addresses 
software and hardware requirements, and also the 
communication structure. 

2. A small and simple design that fits into embedded 
low-cost platforms. 

3. A working prototype of the architecture. 
4. An operational software architecture based on 

modularity and reusability. 
 
3. Robot Control Architecture Design 
Concepts and Review 
 

Robot control architecture involves several different 
notions and implications, particularly architectural styles 
and structures. Architectural structure shows how a system 
is decomposed into the subsystems, and how the subsys-
tems interact to each other. The computation and commu-
nication underpinnings of a given system invariably reflect 
a style. For example, one system might use a publish-
subscribe message passing style of communication, while 
another may use a more synchronous client-server ap-
proach. Most often the holistic architecture is realized only 
at the working stage. This is unfortunate, since a well-
conceived architecture can have many advantages in the 
specification, execution, and validation of robot systems. 
This helps in developing a robot control architecture 
framework. Generally, a framework refers to the structure 
external to an architecture which organizes information 
about the architecture and its application [3]. 
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3.1 Architectural Properties 
 
The architectural style employed has a direct impact 

on the performance of the overall system. For example, the 
pipe-and-filter software style supports components reus-
ability and configurability of the application by applying 
generality to its component interfaces. However, compo-
nents are constrained to a single interface type. The desired 
architecture properties are dealing with complexity, execu-
tion, openness, performance, scalability, simplicity, modi-
fiability, portability and reliability [5]. 
 
3.2 Software Architecture Styles 

 
A software architecture is an abstraction of the run-

time behavior of a software system during some phase of 
its operation. The architecture of a software system defines 
that system in terms of components and of interactions 
among those components [5]. 
 
3.3 Controller Hardware Architecture 

 
Hardware architectures usually emphasize the compu-

tation platforms, their interfaces, and interconnections. In 
effect the hardware architecture should help readers to 
understand the underlying execution mechanics and data-
flow through different execution stages. The Controller 
hardware architecture is evaluated on the basis of: 

1. Throughput (speed) 
2. Communication between modules 
3. Functional coherence 
4. Robustness 
5. Hardware Modularity 

 
The following controller hardware architectures are 

already available for the present study: 
 
1. Open Modular Architecture Controller (OMAC) 

API 
2. UBC Open Architecture Control System 
3. NRC Tripod 
4. CLARAty (Coupled Layered Architecture for 

Robotic Autonomy)Architecture 
 
3.4 Control Architectures 

 
A control architecture refers to the actual operational 

software used to run a machine (e.g. robot), and may also 
include intelligence to handle interactions with the envi-
ronment or system, and optimization procedures necessary 
to enhance performance. This section reviews some well-
known control strategies and some new paradigms in sys-
tem-level control reconfiguration. 
 
3.4.1 Classic Control  
 

Robot control for contour following operations can be 
classified into gross motion control and fine motion con-
trol. The classification of robot control is given in the Fig-
ure 1. In gross motion control, an end-effecter or machine 
tool follows a prescribed path as closely and as quickly as 

possible; the task is to find a control law that governs its 
velocity and position. On the contrary, in fine motion con-
trol, the objective is to control position and force simulta-
neously by a technique called hybrid control. Gross motion 
control may be implemented in joint or Cartesian space 
depending on whether the desired path is specified in the 
joints or Cartesian space. Fine motion control may be pas-
sive or active compliance control. The former may be 
achieved through Remote Compliance Center devices to 
compensate for disturbances.  In active compliance control, 
there is force (torque) feedback to correct errors [4]. 

 
 

 
 
 
 
 

 
 
 
 
 

Figure 1: Classification of Robot Control 
 
3.4.2 Reconfigurable Control Architectures 

 
Generally, there are two issues regarding reconfigura-

tion: Distributed system reconfiguration and Control re-
configuration. The former is related to a structural or sys-
tem-level software reconfiguration while the latter deals 
with modifying control law in its structure to maintain a 
certain performance. Reconfigurable control for fault tol-
erance is an exceptionally challenging control design prob-
lem. Failure detection and identification, parameter estima-
tion and controller redesign have to be carried out on-line 
and completed within tight time boundaries.  Some meth-
ods that address reconfigurable control include linear-
quadratic (LQ) control methodology, adaptive control sys-
tems, knowledge-based systems, and Eigen-structure as-
signments. Considering adaptive control, there are several 
approaches but in general perspective control reconfigura-
tion is attempted by using a continually adapting nonlinear 
model. At this point we make a distinction between fault-
tolerance, robust control, and reconfiguration control 
strategies. In the first situation, when a fault appears in one 
peripheral element and the plant is still observable and 
controllable, the controller uses a fault accommodation 
strategy to achieve its original objectives by adapting con-
trol parameters to fault conditions [4]. 

A robust controller (also called adaptive controller in 
some literature) aims at providing suitable system per-
formance if the parameters and conditions vary within 
given domains. Parameters and conditions include uncer-
tainties in the mathematical model of the plant, and strong 
non-linear interconnections (e.g., between the joints of a 
robot); for distributed systems, robust controllers accom-
modate network-induced jitters and sometimes computa-
tion delays [7]. 
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4. Intelligent Modular Controller 
(IMC) Architecture 
 

Each axis controller (IMC) is designed such that there 
is minimal need for global data interchange. Therefore 
most hard real-time functions are confined within the IMC 
domain. Each IMC communicates with the central coordi-
nator through a network while communication with the 
mechanical axis is through an embedded motion controller 
and a set of I/O signals. The IMC architecture allows a 
completely distributed or a hierarchical architectural struc-
ture in order to accommodate different demands imposed 
by higher application layers. 

Another feature of the IMCs is the ability for any one 
of them or an additional IMC to serve as a real-time coor-
dinator. This is especially important in two different appli-
cations: The first is the situation where the global work-
station or computer which hosts most of the higher layer 
application software runs on a non real-time operating 
system (OS).  While many functions such as path- plan-
ning and NC program parsing may be abstracted from non 
real-time computing, real- time transactions are a necessity 
for coordinating coarse or finely interpolated data. The 
architecture allows an IMC to be selected for this purpose. 
In this case, the IMC is relieved of its motion control ac-
tivities in order to conserve computing resources for real-
time coordination. The architecture, therefore, does not 
predispose the user to any particular operating system 
which is a key advantage. 

The other interesting feature of the IMC architecture 
is that they are designed from the onset to be embedded 
mobile computing elements. This provides the ability for 
them to be integrated or embedded in the mechanical plat-
form. The concept can therefore be used to control mobile 
equipment such as AGVs or mobile robots. There are a 
few architectural permutations that can address such situa-
tions: One arrangement is to have one IMC inside each 
host mechanical axis; another variation is to map several 
motion controllers to one IMC microcontroller. 
 
4.1 Java for Real-time System Design 
 

The Java Virtual Machine (JVM) loads, verifies and 
executes the byte code of a Java program. Execution speed 
is hindered by interpreting byte codes, and this has been 
one of the setbacks of Java in real-time applications until 
recently. One solution to this problem is a JVM with a 
just- in-time (JIT) compiler designed for desktop and 
server systems. However these require large memory foot-
prints and have to be ported for different processor archi-
tectures. 

An excellent candidate for real-time embedded system 
designs is a Java processor (hardware) that implements the 
JVM as a native machine. This avoids the slow execution 
model of an interpreting JVM and the memory require-
ments of a compiler, thus making it suitable for embedded 
systems. There are two approaches to Java bytecode exe-
cution by hardware. In the first approach, a Java coproces-
sor is placed in the instruction fetch path of a general pur-
pose microprocessor and translates Java bytecodes to se-
quences of instructions for the host CPU or directly exe-

cutes basic Java bytecodes. In the second approach, a Java 
chip replaces the general purpose CPU. All applications 
therefore have to be written in Java. 
 
4.2 Microcontroller Hardware Selection 
 

The  criteria  for  the  selection  of  an  appropriate  
computing  platform  are  as follows: 

1. The hardware must be capable of supporting at 
least 60 MHz of computing with 2 Mbytes of 
storage space. 

2. The underlying operating system must be capable 
of multi-tasking synchronously and/or asynchro-
nously. 

3. There should be provision for a real-time serial 
bus and bi-directional Ethernet. 

4. Computing platform based on Java. 
5. There should be an appreciable number of in-

put/output pins for digital or analog interfacing, 
serial and parallel interfacing. 

 
Even though there is a wide variety of processing plat-

forms available, but many of them do not meet the afore-
mentioned requirements of an embedded technology with 
native support for real-time, object-oriented programming 
and communication network. For this reason, we selected 
the aJile microprocessor (see Table.1). The chipset is only 
US$25 (2004 price). The next section gives a brief descrip-
tion of the processor with emphasis on the features of in-
terest to us. 

Table 1: Micro-Controller Chips 
Product Type Chip 

Technol-
ogy 

Speed 
(MHz) 

Java Stan-
dard 

JIFFY Translation FPGA   

Jazelle Co-
Processor 

ASIC 0.18 
µs 

200  

ZSTAR Co-
Processor 

ASIC 0.18 
µs 

104 J2ME CLDC 

picoJava Processor   Full 

aJile Processor ASIC 0.25 
µs 

103 J2ME CLDC 

Cjip Processor ASIC 0.25 
µs 

67 J2ME CLDC 

Komodo Processor 2600 LCs 20 subset 

 
4.2.1 The aJile Processor 
 

The aJile architecture uses JEM2 as a direct-execution 
Java processor that is available as both an IP core and a 
stand alone processor (aJ-100, 2001).The data path is made 
up of a 32-bit ALU, a 32-bit barrel shifter and the support 
for floating point operations (disassembly/assembly, over-
flow and NaN detection). The control memory is a 4K by 
56 ROM to hold the microcode that implements the Java 
bytecode. An additional RAM can be used for custom mi-
crocode to implement new instructions. The aJile inventors 
report that this feature can increase the efficiency of fre-
quently used algorithms by 5–50 times by decreasing exe-
cution overheads. This feature is also used to implement 
basic synchronization and thread scheduling routines in 
microcode to yield context- switching of 1 µs. A Multiple 
JVM Manager (MJM) supports two independent, memory 
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protected JVMs, which can execute with a deterministic 
schedule and full memory protection (Figure 2) [1]. 
 

 
Figure 2: The aJile JEM2 Processor [1] 

 
Currently, there are two silicon versions of JEM2 mi-

crocontrollers: the aJ-80 and the aJ-100. The aJ-100 shown 
in Figure 3 (aJ-100, 2001), provides a generic 8-bit, 16-bit 
or 32-bit external bus interface and can be clocked up to 
103 MHz, while the 66-MHz aJ-80 only provides an 8-bit 
interface. Both versions are made up of the JEM2 core, the 
MJM, 48-KB zero wait state RAM and peripheral compo-
nents, such as timers, I/O’s, a real- time serial communica-
tion bus (SIP) and UART. 16KB of the RAM is used for 
the writable control store and 32 KB for storage of the 
processor stack. Both microprocessors are bundled with 
J2ME-CLDC Java runtime system, optimizing application 
builder, and a very basic debugging tool. Complete im-
plementations for real-time networked embedded Java 
applications are available (aJ-100, 2001 and Systronix, 
2003) [1]. 
 

 
Figure 3: aJ-100 Architecture [1] 

 
4.2.2 The JStick Platform 
 

Systronix Inc. (2003) produces about five different 
boards with the aJile microprocessor. Their JStick micro-
controller meets most of our preferences such as small 
form factor, I/O input/output) interfaces, and network sup-
port. JStick is a Single Board Computer (SBC) with a 
SIMM30 (Single In-Line Memory Module) format. It fea-
tures a host of facilities to provide most controller func-
tionalities. The following is summary of the portfolio of 
this device [2]: 

1. Processor: aJ100 (100 MHz). 
2. Memory: 2-Mbytes SRAM and 4-Mbytes flash. 

3. Power: switching power converters which pro-
vide 5 V and 3.3 V for peripheral devices. 

4. Power supply: unregulated DC of 9-14 volts or 
regulated DC power of 5V. 

5. Communication: serial I/O, 10BaseT Ethernet 
(including the RJ45 jack). 

6. Bus Interface: A high speed I/O expansion bus. 
7. Real-time network: SPI (Serial Peripheral Inter-

face). 
8. Multiple timers, counters, PWM, interrupt inputs, 

etc. 
 
4.3 Motion Controller Hardware 
 

A motion controller is the most important element in a 
motion control system. Next to choosing a proper motor, 
the selection or design of a motion controller is the de-
signer’s most important decision. The fundamental func-
tion of a controller is to compare two signals: the com-
mand signal from the microprocessor and the position 
feedback signal from an encoder, resolver or tachometer. 
The position feedback signal is subtracted from the refer-
ence position to provide a following error which is con-
verted by a digital-to-analog converter (DAC) to analog 
voltage for the servo amplifier. The controller’s prime duty 
is to minimize the position error without causing system 
instability. With an appropriate motion controller in place, 
the designer can focus on stabilizing and programming the 
system. 
 
4.3.1 Motion Controller Design Options 
 

The decision to select an appropriate motion control 
scheme depended on a number of factors. The options con-
sidered are as follows; 

1. JStick as stand-alone motion controller. 
2. Use auxiliary hardware in conjunction with JStick 

for motion control. 
3. COTS motion controller board; Interface an off-

the-shelf motion control board to JStick. 
4. COTS motion control chip; design a motion con-

troller board based on a COTS motion control 
chip. 

 
4.3.2 Motion Controller Board Design Criteria 
 

The following features were considered for the motion 
controller board design: 

1. A programmable motion controller chip with a 
compensator (at least a PID filter), a sampling 
rate of at least 1 KHz for high performance (Bel-
lini et al., 2003), motion profiling, quadrature de-
coding and a real-time means of populating an in-
tegrated buffer with motion set-points from the 
JStick host. The chip should also be capable of 
providing encoder readings to allow monitoring 
or adaptive control. 

2. A Digital to Analog (DAC) chip, which easily in-
terfaces with the motion control chip and pro-
vides at least a 12-bit resolution and a voltage 
output range of +/- 10 V. It is worth noting here 
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that the chip timing parameters should be com-
patible with that of the motion control chip. 

3. An encoder receiver chip (if the motion controller 
needs one) and circuitry for filtering out noise. 
Encoder signals are very susceptible to noise, es-
pecially single line encoders. This is compounded 
by long transmission lines and the use of rela-
tively cheap encoder technology like totem-pole 
and open-collector types. 

4. Digital I/O with interrupts for enable-signal on 
motor driver (amplifier) and mechanical switches 
such as limit and home position switches. 

5. Logic chips such as flip-flops for buffering sig-
nals and signal inverters. 

6. Power converter chip for devices requiring power 
levels which are unavailable on the JStick. 

 
4.4 Motion Controller Chip Selection 
 

There are a number of commercial motion controller 
chips on the market. A few of these were identified as po-
tential candidates for the motion controller board design. 
The National Semiconductor’s LM628 (LM628/LM629, 
2003) was eventually selected based on the criteria out-
lined above, including its low price, simplicity, and proven 
capabilities. 

 
5. Motion Controller Board Design 
 

This section focuses on the hardware design of the 
motion controller board for the IMC node. The schematic 
of the board is shown in Figure 4. The hardware architec-
ture is a multi-tier system with independent controllers for 
each joint of the robot. 
 

 
 

Figure 4: Peripheral Motion Controller Board Architecture 
 
5.1 JStick’s Peripheral Interface Signals 
 

In order to interface this board with peripheral I/O de-
vices, JStick uses a synchronous, memory-mapped High 
Speed I/O Interface (HSIO). The HSIO provides byte-wide 
(8-bit) data, twelve address bits, read and write strobes, 
two chip selects, 3.3 VDC power and ground. More chip 
selects can be easily decoded from the 12-bit address. 
HSIO signals interface directly to 3.3V TTL and CMOS or 
5V TTL devices (Systronix, 2001). In order to configure 
the HSIO for a peripheral device one needs to properly 
select timing parameters to match the timing specifications 
of the peripheral device. Fortunately, the bus timing can be 

varied to support most peripheral speeds. The bus timing is 
controlled by three features; a Phase Locked Loop (PLL), 
the aJile CPU external bus interface settings and the HSIO 
memory mapped address bits [2]. 
 
5.2 Clocking 
 

The hardware architecture provides two means of 
clocking the LM628 chip; static clocking and dynamic 
clocking. There is an onboard 6 MHz clock which pro-
vides very accurate clocking for the chip. The clock can be 
enabled or disabled in software but the output frequency is 
fixed. 
 
5.3 LM628 DAC Output 

 
The LM628 precision motion controller outputs data 

to a DAC (Digital to Analog Converter) on its ports 
DAC0-DAC7. Its output port can be configured for either 
a latched 8-bit parallel output or a multiplexed 12-bit out-
put. While the 8-bit output can be directly connected to 
non-input-latching DAC (Digital to Analog Converter), the 
12-bit output has to be demultiplexed using an external 6-
bit latch. The IMC motion controller board uses the 12-bit 
output mode for better resolution. 
 
5.4 Servlet Technology 
 

Servlets are reusable Java applications which run on 
response/request-oriented web server. The server loads and 
executes the servlets, which accept zero or more requests 
from clients and return data to them.  Functionally, they 
are similar to CGI scripts, but more platform-independent. 
A few of the many applications of servlets include the fol-
lowing; 
 
1. Servlets can process data posted over Https using an 

HTML form. 
2. Servlets can accommodate multiple requests concur-

rently to allow collaboration between multiple users. 
 

Servlets can forward requests to other servers and 
servlets in order to balance load among servers or partition 
a single logical service over several servlets. 
 
6. Results 
 

System evaluation (and fine-tuning) is a very broad 
exercise which could pass for another major research pro-
jects. Distributed reconfigurable controller is evaluated 
based on the following criteria: 

1. Sampling Time and Communication Latency  
2. Block Processing Time and Real-Timeliness  
3. Synchronicity 
4. Positioning Accuracy 
5. Architectural Flexibility. 
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6.1 Sampling Time and Communication La-
tency 
 
The PID motion controller chip (LM628) on the IMC 
performs high speed trajectory generation (including ramp-
ing and slewing) at a maximum sampling speed of 341µs. 
For jitter and processing time, the maximum latency is 
approximately 4 µs. 
 
6.2 Block Processing Time and Real-
Timeliness 
 

The interpolator runs on a computing platform 
(JStick) dedicated for real-time coordination. The JStick 
platform executes real-time threads in a cyclic determinis-
tic manner. Thread context switch takes only 1 µs, thereby 
providing acceptable real-time outputs. ISO G-code pro-
grams are loaded to the interpolator’s flash memory by 
Ethernet from a GUI program running on a regular PC. 
The JStick’s flash speed is 90 ns and its execution speed is 
15 Mega bytecodes/s. To measure the average block proc-
essing speed, G1 and G2 codes are executed on the plat-
form. An average time of 1.5 ms is obtained for 3-axis 
linear interpolation, and 2.0 ms for 2-axis circular interpo-
lation. However, the block processing time is constrained 
by the hardware limitation of the motion controller chip to 
10 ms as mentioned in the previous section. 
 
6.3 Synchronicity 
 

Synchronization is a critical issue with decentralized 
controllers. The worst case delay, as shown in Figure 5 is 
about 1 ms, and over 20% of the data fell in this region. In 
the next, the clock Synchronization scheme developed for 
the architecture is implemented. The worst case delay fell 
appreciably to 0.1 ms (Figure 6). For even finer synchroni-
zation, the real-time coordinator is hardwired to the IMC 
controllers by an interrupt line. The delay results are illus-
trated in figure 7. Delays are highly repeatable in this case. 
This illustrates the versatility of the architecture. 

. 
 

 
Figure 5: Timing Variations-Uncompensated Delays 

 

 
Figure 6: Timing Variations- Compensated Delays 

 

 
Figure 7: Timing Variation- Synchronization by Interrupts 
 
6.4 Positioning Accuracy 
 
Some position measurements are presented below to illus-
trate the performance of the controller on a 3-axis machine. 
Figure 8 shows a zigzag pattern move realized with a feed-
rate of 900 mm/s. Figure 9 illustrates circular interpolation 
with a feed-rate of 350 mm/s and a radius of 5 mm (1440 
counts). The trajectory errors associated with a 1-mm ra-
dius (288 counts), 5-mm radius and 25-mm radius circular 
paths are shown in figure 10 to 12. The error patterns are 
very similar and bound by a maximum of about 11 counts. 
Two linear and one circular interpolations followed by 
another linear interpolation are executed in one trajectory 
path in Figure 13. 

 
Figure 8: Linear Trajectory 



13th National Conference on Mechanisms and Machines (NaCoMM07), 
IISc, Bangalore, India, December 12-13, 2007        NaCoMM-2007-72 

 303 

 
Figure 9: Circular Trajectory – 5-mm radius 

 
Figure 10: Radial Error – 1-mm radius 

 
Figure 11: Radial Error – 5-mm radius 

 

 
Figure 12: Radial Error – 25-mm radius 

 
The error patterns are very similar and bound by a 

maximum of about 11 counts. Dry friction in the mechani-
cal drives and interpolation approximations contribute 
significantly to these errors. Blended moves are also very 
acceptable. In Figure 13, two linear and one circular inter-
polations followed by another linear interpolation are exe-
cuted in one trajectory path. 

 

 
Figure 13: Combined Linear and Circular Paths 

 
6.5 Architectural Flexibility 
 

By virtue of the intelligent communication protocols 
and the modular nature of our hardware and software ar-
chitecture, flexibility is greatly enhanced. When machine 
(or workstation) configurations such as the number of axes 
need to be scaled, control modules are added to the net-
work to match the number of axes. The protocols auto-
matically configure the network for such changes. The 
modular nature of the software architecture makes it easy 
to add modules to accommodate changes. For example, 
through software interfacing new algorithms for kinemat-
ics or interpolation can be readily integrated. Figure 14 
illustrates the simulation of the guide (slider) movements 
of a parallel kinematic mechanism on a 3-axis table. 

 

 
Figure 14: Tripod Slider Displacements 

 
7. Conclusion: 
 

The main contributions of the present work are as fol-
lows: 

1. An Ethernet-based real-time communication ar-
chitecture with implicit clock synchronization. 
The technology also enables the controller sub-
component design to incorporate embedded web-
servers for remote monitoring and system con-
figuration. 

2. The development and demonstration of a protocol 
for automatic configuration (i.e., PnP) of control-
lers and other embedded shop floor devices. 

3. The design and implementation of a medium-
performance flexible controller incorporating the 
above on a homogenous Java software and hard-
ware processor environment. 
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Table 2: Performance Evaluation Results 

Evaluation Criteria Value 
Maximum servo loop 
cycle 

341 µs 

Communication la-
tency 

4 µs 

Block Processing 3-axis linear interpolation 
2-axis circular interpolation 

Synchronicity Synchronization through net-
work: maximum jitter = 1µs. 
Synchronization by interrupt 
line: maximum jitter = 30 µs 

Positional Accuracy Max. radial error on 25 mm 
circle: 0.03 mm (BLU = 0.003 
mm) 

Architectural flexibil-
ity 

Easy to add/remove axis 
Quick adaptation to different 
mechanical platforms. 
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