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Abstract 
The viscoelastic damping is one of key factors that affect 
vehicle vibration. It has been demonstrated that fractional 
derivative model can accurately model this kind of fre-
quency dependence damping very well. Generally, the 
excitation of rough road can be acted as a stationary ran-
dom vibration process in time domain when a vehicle is 
traveling at constant speeds. But the road roughness should 
be considered as a non-stationary random vibration proc-
ess when traveling at variable speeds. In this paper, the 
vehicle non-stationary process is investigated by using the 
fractional damping model. The road roughness is built 
using PSD (power spectral density) in space domain by 
Laplace transform. The proposed method is validated by 
simulating a vehicle running with variable speeds in time 
domain. The vehicle non-stationary random response in 
frequency domain are also acquired by FFT( Fast Fourier 
Transform) algorithm.  

Keywords: non-stationary, random vibration, fractional 
damping, PSD  

1 Introduction 

The road profile, the only input of the passive suspension 
system, has a significant effect on the vehicle’s vibration. 
Hence in order to generate a suitable road profile, it was 
investigated very carefully [1]. There are many possible 
ways to describe the road input. Generally, the road 
roughness is considered as a random process in space do-
main and if the velocity is constant, it can also be consid-
ered as a stationary random process in time domain.  
The stationary random vibration method was adopted by 
many researchers to investigate the vehicle vibration re-
sponse [2, 3]. The road roughness was acquired by a white 
noise signal with certain power spectral density (PSD). 
While previous study all assumed that the vehicles were 
running at certain constant speeds.  

However, the vehicle always travels at variable speed, 
especially when starting, accelerating and breaking. There-
fore, the vibration caused by rough road surface should be 
considered as a non-stationary random process [4, 5]. Fang 

[6] has constructed the models for two types of evolution-
ary random excitations: one may be obtained by filtering a 
stationary random process through a linear time-dependent 
system, while another may result from a nonlinear trans-
formation of the argument of a stationary random process. 
Based on the models, the unified expressions of the re-
sponse evolutionary power spectra are derived through the 
complex modal analysis. Hammond and White [7] started 
with a stationary process and then distorted the independ-
ent variable so that the process is “stretched out” or “com-
pressed” so as to create a non-stationary process. Sobczyk 
[8] investigated stationary response to profile imposed 
excitation with randomly varying speed using perturbation 
methods. Sun [8] used state space approach and the trans-
fer function approach to study the transient phenomenon 
subjected to a non-stationary vibration. Based on transient 
transfer function, Zhang [4] investigated a new time do-
main method by using the non-stationary excitation model 
of a rough road. In [5], instead of the conventional FFT 
( Fast Fourier Transform) method, the continuous wavelet 
transform as well as the discrete wavelet transform were 
applied to study the non-stationary inputs and responses of 
the vehicle vibration system. 
Quarter-car model is very widely used to simulate the re-
sponse of the vehicle subjected to non-stationary vibration 

by many researchers. The damping force was always 
modeled as a force which is proportional to the first de-
rivative of the relative displacement between the sprung 
mass and the tire. However, in recent years, a number of 
papers have shown that viscoelastic damping can be mod-
eled using fractional calculus, which can more accurately 
model the viscoelastic damping behavior, and can take 
frequency dependency into account. Caputo and Mainardi 
[10] introduced a memory-based damping model and 
showed that fractional derivatives and Mittag-Leffler func-
tion could be used to model viscoelastic phenomena. Ros-
sikhin [11] showed that fractional derivatives could more 
accurately model the viscoelastic behavior of the damping. 
Bagley [12, 13] showed that a fractional damping relation-
ship could be used to predicted transient structural re-
sponse. 
In this paper, based on transfer function method and the 
work done by Zhang [4], a new way for vehicle non-
stationary random vibration research is proposed. A quar-
ter-car model with fractional damping was built to analyze 
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the response of the vehicle subjected to the excitation of 
the road profile. Based on Laplace transform, the fractional 
order calculus was approximated by rational functions. 

The paper is organized as follows: Section 2 introduces 
the fractional order calculus. In Section 3, the quarter-car 
model with fractional damping is introduced. Section 4 
describes the construction of the non-stationary road 
roughness. The simulation of non-stationary vibration re-
sponse is conducted and illustrated in Section 5. Section 6 
offers our conclusions and further study. 

2 Fractional Order Calculus  

The idea of fractional order calculus has been known since 
the development of regular calculus, with the first refer-
ence probably being associated with Leibniz and L’ Hospi-
tal in 1965. Even though the idea of fractional order opera-
tors is as old as the idea of the integer order. In the last 
decades, the use of fractional order operators and opera-
tions has become more and more popular among many 
research areas, such as in physical chemistry, electronics, 
mechanics, automatic control, robotics, signal processing, 
et al [14]. 

Fractional calculus is a generalization of ordinary dif-
ferentiation and integration to arbitrary order (non-integer). 
The most common definition of a fractional derivative is 
through Riemann-Liouville integral [15]: 
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for 0n > . Normally the lower integration limit c  is cho-
sen to be zero. The fractional order derivative definition is 
consistent with the definition of integer derivatives 
whenα ∈� . Modeling of viscoelastic behavior of damp-
ing normally results in the order of the time derivative 
being between zero and one and enabling the above equa-
tion to be rewritten in a simpler form: 
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For convenience, Laplace domain notion is usually used 
to describe the fractional integro-differential operation. 
The formula for the Laplace transform of the Riemann-
Liouville fractional derivative has the form 

1
1

0 00
0

( ) ( ) (0)
n

st k k
t t

k
e D f t dt s F s s D fα α α

−∞ − − −

=

= −∑∫        (3) 

for ( 1n nα− ≤ ≤ ) where F(s) = L[f(t)]  is the normal 
Laplace transform. 
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According to Oustaloup [14], it is possible to obtain use-
ful approximations to calculate the fractional calculus by 
using of a frequency-band real non-integer differentiator:  

( ) ,H s sα α += ∈�                              (5) 

Where α is a real non-integer. We give high and low 
transitional frequencies hω  and bω , and the unit gain fre-
quency and the central frequency of a band of frequencies 

uω  ( u h bω ω ω= ) geometrically distributed around it.  
The above function (5) can be approximated by a ra-

tional function: 
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More details about the approximated rational functions 
can be referred to [14]. 

3 Quarter-car Model with Fractional 
Damping  

Quarter-car model has been widely used for suspension 
analysis and design by many researchers, because it is sim-
ple and can capture many important characteristics of the 
full model, and provide a suitable framework to investigate 
suspension control concepts [16].  
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Figure 1: Quarter-Car Model 

The quarter-car model, Figure 1, consists of a sprung 
mass supported on a suspension system which has stiffness 
and damping characteristics and the suspension system is 
connected to the unsprung mass. The tire is modeled as a 
spring. Traditionally, the stiffness characteristic was mod-
eled as a force which is proportional to the relative dis-
placement between the sprung mass and the tire, and the 
damping characteristic was modeled as a force which is 
proportional to the first derivative of the relative displace-
ment between the sprung mass and the tire. However, in 
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recent years, a number of papers have shown that viscoe-
lastic damping can be modeled by using fractional calculus 
more accurately.  

Generally, the dynamic equations of motion for the 
quarter model are given as follows: 

( ) ( ) 0s s s s t s s tm z k z z c z z∗ + ∗ − + ∗ − =&& & &                  (14) 
( ) ( ) ( ) 0t t t t r s s t s s tm z k z z k z z c z z∗ + − − ∗ − − ∗ − =&& & &  (15) 

Where sm  is the sprung mass, which represents the car 
chassis, tm is the sprung mass, which represents the wheel 
assembly, sk and sc  are stiffness and damping of the un-
controlled suspension system, respectively; tk is the verti-
cal stiffness of the tire, sz is the displacement of the sprung 
mass , tz  is the displacement of the tire, rz is the road dis-
turbance. 

when fractional damping is introduced, the equations 
can be written as follows: 

( ) ( ) 0s s s s t s t s tm z k z z c D z zα∗ + ∗ − + ∗ − =&&            (16) 
( ) ( ) ( ) 0t t t r s s t s t s tm z z z k z z c D z zα∗ + − − ∗ − − ∗ − =&&  (17) 

Where tDα  represents the fractional differentiation operator, 
α  is the calculus order, can be any real number. In prac-
tice, the value for α should be obtained by parameter iden-
tification method based on material experiment data [17]. 
While in this paper, the author just want to illustrate a new 
procedure for non-stationary research based on the frac-
tional damping model and α is set to 2/3. 

4   Simulation of Road Roughness  

One of the most useful tools to describe the stationary 
road roughness is the power spectral density (PSD). When 
a car moves at a constant velocity u , the road roughness 
can be viewed as a stationary process in space domain, and 
the PSD of the road disturbance input can be expressed by 

0
0
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q q

nG n G n
n

-=                              (18) 

Where ( )qG n  is the road PSD, n  is the spatial frequency. 
The reference spatial frequency 0n  can be defined by 

0 0.1( / )n cycle m= , 0( )qG n  is the road roughness coeffi-
cient, which is the value of PSD at the reference spatial 
frequency 0n , and represent different grades of road, w  is 
called waviness and indicates whether the road has more 
long wavelengths ( w  is large) or short wavelengths ( w  is 
small). The waviness w  is found within the 
range 1.75 2.25w≤ ≤ , generally 2w = . When introduce 
spatial angular frequencyΩ : 

2 nπΩ =                                       (19) 
The equation (18) can be written as: 

0
0

( ) ( )( ) w
q qG G -WW = W

W                       (20) 
Where ( )qG W  is the road PSD, Ω  is the spatial angular 
frequency ( rad/m ). 0W  is the reference spatial angular 
frequency, and 0 02 npW = . 0( )qG W  is also the road 

roughness coefficient, which is the value of PSD at the 
reference spatial angular frequency 0Ω . w  has been men-
tioned before, and has the same definition. 

When the vehicle drives at a constant velocity u , the re-
lationship between the time frequency f  and the vehicle 
forward velocity u  is defined by: 

f u n= ×                                     (21) 

Derived from equation (21), the PSD of ground dis-
placement has the following general form 

2
0 0
2
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q

G n n u
G f

f
=                        (22) 

From the equation (22), we can get theoretic ground 
PSD under different frequencies. 
The relationship between the spatial angular frequency Ω  
( rad/m ) and the angular velocity ω (rad/s) can be defined 
as follows: 

uω = Ω                                     (23) 
So the road roughness in frequency domain can be de-

scribed as the follows: 
2

0( ) ( ) / ( ) /q q qG G u G uω ω= Ω = Ω              (24) 
However, it may be troubles at 0ω = , ( )qG ω = ∞ . An 

improved equation for PSD of road roughness in frequency 
domain is shown as, 

2 2
0 0( ) ( ) /( )q qG G uω ω ω= Ω +                    (25) 

Where 0ω  is the lowest cut-off angular frequency, 

0 0 02 2f unω π π= = . 
Equation (25) can be considered as a response of a first 

order linear system to white noise excitation. 
Based on the theory of random vibration, the following 
relationship can be obtained, 

2( ) ( ) ( )q wG H Sω ω ω=                         (26) 
Where ( )H ω  is the transfer function, and wS  is the 

PSD of white noise, where normally ( ) 1wS ω = . So from 
the equation (25) and (26) the transfer function ( )H ω  can 
be described as: 

0

0
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According to Laplace transform, the above equation can 
be written as: 

0

0

( )
( ) qG u

H s
sω

Ω
=

+
                         (28) 

The equation (28) can be viewed as the transfer function 
from white noise signal to road roughness. From the above 
equation, we can get the following equation: 

0 0( ) ( ) ( ) ( )r r qz t z t G uw tω+ = Ω&                 (29) 

Where ( )rz t  is the road roughness, ( )w t  is a white noise 
signal whose power spectral density is 1. Be-
cause 0 0 02 2f unω π π= = , the above equation can be 
shown as: 

0 0( ) 2 ( ) ( ) ( )r r qz t un z t G uw tπ+ = Ω&               (30) 
From equation (30), the road roughness can be obtained. 

The numerical calculation for the road roughness was car-
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ried out by Matlab/Simulink, as can be seen in Figure 2.  

 
Figure 2: Simulink Block to Generate the Stationary Road 

Roughness 

Figure 3 shows the time course of the stationary road 
roughness when vehicle drives at 20 m/s on Grade C road. 
FFT method is used to get the PSD from the time domain 
to the frequency domain. Figure 4 shows that the simula-
tion road PSD fits the theoretical value very well, which 
illustrates the effectiveness of the method to get a station-
ary road roughness. 

 
Figure 3: Time Course of Stationary Road 

 
Figure 4: PSD of Stationary Road Roughness 

 
Figure5a: Stationary Response of the Body 

 
Figure5b: Stationary Response of the Suspension 

 
Figure5c: Stationary Response of the Tire 

Figure5: Stationary response (20m/s) 

As can be seen from the vehicle stationary response, fig-
ure 5, the body, the suspension and the tire responses to the 
stationary road are very regular and the maxim or mini-
mum magnitudes of all the responses almost remain con-
stant. 

When a vehicle drives at variable speeds, the equation 
(30) can be expressed as: 

0 0( ) 2 ( ) ( ) ( ) ( ) ( )r r qz t u t n z t G u t w tπ+ = Ω&             (31) 
As same as the way to get a stationary random process, a 
non-stationary random process can be obtained from equa-
tion (31). The initial speed of the vehicle is 0 m/s, and then 
the vehicle will accelerate with the acceleration2 m/s2 and 
3 m/s2, respectively. Figure 6 and Figure 8 show a velocity 
course of a non-stationary road. From Figures 6-9, we can 
see the roads and the PSD of the no-stationary road rough-
ness under the used acceleration exhibit similar variation 
process.  
 

    
Figure 6: Velocity Course of Non-Stationary Road (2 m /s2) 
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Figure 7: PSD of Non-Stationary Road Roughness (2 m /s2) 

    
Figure 8: Velocity Course of Non-Stationary Road (3 m /s2) 

  
Figure 9: PSD of Non-Stationary Road Roughness (3 m /s2) 

5  Simulation of Non-stationary Re-
sponse 

The quarter-car model with fractional damping was built 
with Matlab/Simulink. The Figure 10 shows the flowchart 
of the system. The parameters of the quarter-car model 
used in the numerical calculations are given as fol-
lows: 280sm kg= , 36tm kg= , 16000 /sk N m= , 

160000 /tk N m= ,  980 /sc N s m= ⋅ . The fractional order 
of the damper is set to 2/3.  

 
Figure 10: The Flowchart of the System in Mat-
lab/Simulink 

5.1 Time domain analysis 

The initial speed of the vehicle is 0 m/s. The vehicle accel-
erates to 30 m/s with acceleration 2 m/s2 and 3 m/s2, re-
spectively. Figure 11 and Figure 12 show response to the 
non- stationary road roughness with vehicle acceleration 2 
m/s2 and 3 m/s2, respectively.  

From Figure 11 and Figure 12, Compare to the station-
ary response, it can be seen that the amplitudes of the ve-
hicle body’s acceleration, the suspension travel displace-
ment and the tire deflection all increase with speed. In fact, 
vehicles always drive at variable speeds, so it is not accu-
rate to simulate the vehicle response subjected to station-
ary excitation, while assuming the vehicle drives at a con-
stant speed. Comparing Figure 12 to Figure 11, we can 
seen the periodicity of all the response under acceleration 
3m/s2 is smaller than the results under acceleration 2 m/s2. 
Namely, it takes less time for a vehicle to reach same ve-
locity with a big acceleration than that with a small accel-
eration. Furthermore, from the two simulation results, the 
RMS (root mean square) of the body acceleration is 0.1492 
for acceleration 2 m/s2, and the RMS of the body accelera-
tion is 0.1650 for acceleration 3 m/s2. So we can conclude 
that, the vibration is more severely when the vehicle drives 
with a larger acceleration. 

 
Figure11a: Non-Stationary Response of the Body 
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Figure11b: Non-Stationary Response of the Suspension 

 
Figure11c: Non-Stationary Response of the Tire 

Figure 11: Non-Stationary Response (2m/s2) 

 
Figure12a: Non-Stationary Response of the Body 

 
Figure12b: Non-Stationary Response of the Suspension 

 
Figure12c: Non-Stationary Response of the Tire 

Figure 12: Non-Stationary Response (3m/s2) 

5.2 Frequency domain analysis 

In general, the ride comfort is frequency-sensitive. From 
the ISO2361 [3], the human body is very sensitive to verti-
cal vibration in the frequency range of 4-8 Hz. Hence, it is 
necessary to evaluate the suspension subjected to non-
stationary road excitation in frequency domain. The non-
stationary random response in frequency domain of the 
vehicle are acquired by FFT( Fast Fourier Transform) Al-
gorithm. Also, the vehicle initial speed is 0 m/s and it will 
accelerate with acceleration 2 m/s2, 3 m/s2  and 4 
m/s2,respectively. Figure 13 shows the frequency response 
of the body acceleration sz&& , the suspension travel s uz z− , 
and the tyre displacement uz . From Figure 13, we can see 
there are two response peaks for a quarter-car model and 
the maximum response values will increase with accelera-
tion increasing. Of course, the quarter-car response is in-
sensitive to the frequency range of 4-8 Hz.  

 
Figure13a: Frequency response of the Body 

 
Figure13b: Frequency Response of the Suspension 
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Figure13c: Frequency Response of the Tire 

Figure 13: Frequency Response of Suspension 

6 Conclusions 

This paper proposed a new method for analyzing vehicle 
non-stationary random vibration. A quarter-car model with 
fractional damping was built to analyze the response of the 
vehicle subjected to the non-stationary excitation of the 
road profile. Based on Laplace transform, the fractional 
order calculus was approximated by rational functions. 
The comparison of the no-stationary vibration simulation 
results to the results of stationary vibration simulation re-
sults indicated the proposed method is effective. 

However, the model built in the work is a linear system. 
The nonlinear system can be considered in the future. The 
model adopted in this paper is a quart-car model with two 
degrees of freedom. A much more complicated vehicle 
model with more freedom will be built to analyze the re-
sponse subjected to non-stationary excitations. The pa-
rameter identification method can also be used to obtain 
the accurate fractional damping model in the future re-
search. 
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