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Abstract 

In this paper, a methodology and procedure for the ex-
perimental determination of the damping coefficients in 
the rigid-flexible robotic systems is presented. A brief 
overview of the work done by various researchers to 
theorically quantify the damping parameters is presented 
underlining the need to complement the theoretical estima-
tion with the experimental data for accurate measurement 
of damping coefficients. The equations of motion of the 
rigid-flexible robotic systems incorporating damping are 
also outlined. 

Keywords: Flexible, damping, logarithmic decay, method 
of evolving spectra 

1 Introduction 

Dynamics of a flexible link manipulator is highly non-
linear, configuration dependent and computationally com-
plex. Moreover, real robotic systems always involve exter-
nal factors such as joint damping, structural damping in the 
flexible links, working environment of the robot, etc., 
which cannot be modeled without reasonable assumptions. 
As a result, the dynamic equations of the rigid-flexible 
robots, like the ones presented in [1-3], represent only ide-
alized and approximate models of the actual systems. At-
tempts by various researchers [4-6] to theoretically esti-
mate the damping factors of a system have been only par-
tially successful. Consequently, experiments have gener-
ally been conducted by the different researchers to quan-
tify the above physical parameters which cannot be easily 
modeled in the dynamic equations. The overall objectives 
of the experiments conducted are (i) to incorporate damp-
ing into the model, and (ii) to validate the theoretical 
model. Thus, Mingli et al. [7] have conducted experiments 
on a two flexible-link arm to identify the damping 
charecteristics in the motion and overall friction coming on 
the robot. Chapnik et al. [8] have experimentally investi-

gated the projectile impact dynamics of an unactuated 
flexible beam. Feliu et al. [9] have conducted the experi-
ments on a three degree of freedom robot to control its 
position using sensors and feedback loops. Mavroidis et al. 
[10] and Stieber et al. [11] have conducted experiments on 
the multi-link robot whose end effector is supported on a 
long and flexible link. Similarly, De Luca and Siciliano 
[12] have used the experimental results to study the regula-
tion of the flexible arms under gravity. Similarly, Bragliato 
[13], Queiroz et al. [14] and Feliu et al. [15] have validated 
the dynamic models proposed by them using experimental 
verifications, and extended the results for feedback con-
trol. The results of the experiments are complemented with 
the theoretical models to estimate more accurate behavior 
of the robotic systems. Different experimental methodolo-
gies adopted by the above researchers vary mainly in its 
approaches, e.g., the type of sensors to measure vibrations, 
architecture of the robot, initial conditions, etc., and make 
trade-offs amongst the contradicting requirements. For 
example, while the frequency of rotational joint oscilla-
tions is moderate, the frequency of the vibrations of the 
flexible link is very high, hence it is difficult to measure 
both using a single sensor. Consequently, various re-
searchers have adopted different combination of sensors, 
data acquisition systems, and actuators to study the tip 
performance characteristics. Also note that, a study con-
ducted under open-loop control provides a better scenario 
for simulation validation since the use of feedback tends to 
mask some of the flexibility effects present in the system 
[16]. Moreover, the inclusion of damping in the dynamic 
model also improves the numerical stability characteristics 
of the simulation algorithm [1]. 
It is clear from the above that the study of damping, its 
estimation and incorporation into the real robotic systems 
is an area of research and has wide interest. Note that a 
robotic system has damping mainly because of two rea-
sons: (1) due to friction at the joint assembly, namely joint 
damping; and (2) due to structural stiffness of its links, 
namely structural damping, which manifest itself physi-
cally in the form of decay in the amplitude of vibrations of 
the link. The experimental procedure presented in this pa-
per for the determination of joint damping coefficients, is 
based on the logarithmic decay of the amplitude of the 
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oscillations of robotic links. The structural damping coef-
ficients are estimated mainly using the modal analysis and 
the method of evolving spectra. First the effects of damp-
ing in different modes of vibrations are decoupled using 
the modal analysis. Then using the fast Fourier transform 
of the vibration response on the flexible in progressive 
time windows, the structural damping coefficients are de-
termined. The advantage of the proposed method of de-
termination of structural damping is that besides being 
accurate, it also provides information about the time-based 
amplitude of the vibration in each mode. The method is 
illustrated using a single flexible link clamped at one end. 
Comparison of the experimental results with the simula-
tion results is also presented. 
The paper is organized as follows: after a brief introduc-
tion and overview of the related work done by various 
researchers in Section 1, the dynamic equations of rigid-
flexible robotic systems incorporating the damping are 
outlined in Section 2. Procedures proposed for estimation 
of damping coefficients, joint and structural, are presented 
in Section 3. The method of evolving spectra is also pre-
sented in Section 3 and the proposed method of estimation 
of structural damping coefficients is illustrated in Section 4 
using a cantilever type flexible link, clamped at one end 
undergoing natural vibrations. As a simple representative 
of robotic systems with both joint and structural damping, 
example of a single flexible link with revolute joint and 
falling freely under gravity is presented in Section 5. De-
tails of experimental set-up and comparison of experimen-
tal and simulation results are also presented followed by 
conclusions in Section 6.  

2  Dynamic Equations of a Damped 
Robotic System 
 
In a robotic system with rigid links the damping results 
mainly due to joint assembly, however damping in a flexi-
ble link is of two types: joint damping and structural 
damping. The decay in the amplitude of the oscillations of 
a link is due to friction at its joint, and is referred to as 
joint damping, whereas the decay in the amplitude of vi-
brations of a flexible link is due to its structural stiffness, 
and is called as structural damping. Both the types of 
damping characteristics are directly proportional to the 
first derivative (rate) of the associated generalized coordi-
nates. For a rigid link, structural damping is absent as the 
generalized coordinates associated with the vibrations of 
the link do not exist. Moreover, only linear model of 
damping is considered here, for simplicity. 
Dynamic equations of motion for a damped, n-link rigid-
flexible serial robot are given as, 

qqI &&& Ζφ +=                     (1) 
where q&  is the n –dimensional vector of joint rates de-
fined as  

   [ ]TT
n

T qqq &L&& 1≡ , and [ ]TT
i

T
iii cdq &&&& θ≡  

for i=1, …, n, in which iθ&  is the rate of rotational or trans-
lational displacement of the ith joint, iθ , depending on its 
type, i.e., revolute or prismatic, respectively. Vectors 

id& and ic& are the rates of generalized coordinates di and ci.   
Moreover I is the nn × Generalized Inertia Matrix (GIM), 
and φ  is the n –dimensional vector corresponding to the 
external generalized torques, convective and Coriolis 
terms, i.e., the quadratic terms of joint rates and deriva-
tives of the flexible coordinates, and those associated with 
the potential, strain and dissipation energy terms. Further-
more, q is the vector of generalized coordinates associated 
with the joint angles or displacements, and those of the 
vibration amplitudes for the flexible links. Note that n is 
the degree of freedom (DOF) of the rigid-flexible robot 

given by, ( )∑
=

++≡
fn

i 1
3 ii mmnn , where fr nnn +≡ , is 

the total number of links– rn and fn being the number of 

rigid and flexible links, respectively. The scalars, im and 

im are the number of modes of vibration considered to 
model the link deflections in bending and torsion, respec-
tively. Also, the number 3 in the formula for n  corre-
sponds to the X, Y and Z components of the spatial 3-
dimensional deflection of the ith flexible link, and its corre-
sponding generalized coordinates in bending are 

x
id , y

id and z
id . In this paper, for the purpose of ease of 

presentation the flexible links are considered planar, al-
though the methodology presented is equally valid and can 
be easily extended to the general case of flexible beams 
undergoing vibrations in 3-dimensional space. Thus, the 
links are assumed to be vibrating in mi number of modes 
about the joint axis, say Z-axis. Accordingly, for the sys-

tems at hand, n is given by ( )∑
=

++≡
fn

i 1
ii mmnn , and in 

eq. (1) the nn × damping coefficient matrix, Z, is repre-
sented as 

⎥
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where iZ , for i=1, …, n, is the (1+mi+ im )-dimensional 
matrix given by 

⎥
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i
i ζ

Ζ
0

0iκ                    (2b) 

in which the scalar iκ represents the damping coefficient at 
the joint and the ( ) ( )iiii mmmm +×+ dimensional diagonal 
matrix, iζ , corresponds to the structural damping of vibra-
tion of the link in mi modes of bending and im modes of 
torsion. Note that, iκ and iζ are decoupled because of lin-
ear model of damping assumed here.  Moreover, for rigid 
links, the damping coefficient matrix associated with link, 
i, namely Zi, reduce to a scalar iκ . The joint damping coef-

ficient iκ and the elements of structural damping coeffi-
cients matrix iζ are determined here from the experimental 
data.  
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3 Estimation of Damping Coefficients 
In this Section, methodologies to determine the joint and 
structural damping coefficients are presented. 

3.1  Joint damping 
The joint damping coefficient, iκ , for a robotic system can 
be given by  

iii κξκ =                    (3a) 
where iξ is the damping ratio and iκ is the critical damping 
factor associated with the ith joint. The damping ratio, iξ , is 
determined by measuring the rate of logarithmic decay of 
the oscillations of the link and is given by [17] 

( ){ } ( )11 2 1 logi e kξ π k x x= −                  (3b) 
in which xi and xk are respectively the amplitudes in 1st and 
kth cycles of oscillation of the link. The critical damping 
factor associated with the ith joint, iκ , is obtained as [17] 

fii ηaπρκ 4=i                            (3c) 

where iρ is the mass per unit length, ai is the length–one of 
the four Denavit Hartenberg (DH)-parameters used to de-
fine a robots geometry– and fη is the natural frequency of 
oscillation of the ith link. 

3.2  Structural damping 
The vibration amplitude of a flexible link is a combination 
of several modes. In order to determine the structural 
damping coefficients with respect to each individual 
modes of vibrations, it is required to separate out the decay 
in amplitudes of vibration due to each mode. This decoup-
ling is essential because the structural damping coefficient 
of a beam is different in each of its mode. For a beam, vi-
brating in mi modes of vibrations in bending and im modes 
of vibrations in torsion, the associated structural damping 
coefficients are given by ( )ii mm +  diagonal elements of 
the ( ) ( )iiii mmmm +×+  diagonal matrix, iζ of eq. (2b). 
Similar to the joint damping, eq. (3a), the matrix for the 
structural damping coefficients is defined as:  

iii ξ ζζ
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=                    (4a) 

where iξ
~

is the ( ) ( )iiii mmmm +×+  diagonal matrix of 
damping ratios associated with the mi modes of vibrations 
in bending and im modes of vibrations in torsion of the ith 

link, and iζ is the ( ) ( )iiii mmmm +×+  matrix of critical 
damping factors associated with the respective modes. The 
matrices iξ

~
and iζ  are thus defined as, 
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where ijξ
~

, for j=1, …, mi, is the damping ratio of the ith 
link in its jth mode, referred here as the modal damping 

ratio, and iCξ
~

 is the im × im damping ratio matrix associ-
ated with the vibration of the ith link in torsion. In order to 
isolate the decay in the amplitude of vibration of link in 
each mode and to determine the corresponding damping 
ratios ijξ

~ , the method of evolving spectra [18] is adopted 

here, whereas the critical damping factor, ijζ , for j=1, …, 
mi, is obtained from the modal analysis of the link [17]. In 
this paper, for the comparison of experimental and simula-
tion results, the torsional vibration is neglected due to the 
types of beams selected in the experimental set-up. Hence, 
the damping ratio matrix, iCξ

~
, vanishes.  

  
3.2.1 Structural damping ratios: Method of Evolving 
Spectra 
In this section the method of determination of the 
( ) ( )iiii mmmm +×+  dimensional diagonal matrix of the 

structural damping ratios, iξ
~

, associated with the mi 
modes of vibrations in bending of the ith link is presented. 
The methodology, namely the method of evolving spectra, 
is based on the Fast Fourier Transform (FFT) of the re-
sponse of the link in a series of selected time windows.  
First a time window is selected in the amplitude response 
of the link. Then the FFT of the response in this time win-
dow is performed. The natural frequencies of the link, 
known in advance from a real time analyzer, are identified 
as the sharp peaks in the FFT response. Thus, the corre-
sponding amplitude of the link vibration in each mode is 
obtained. The time window is then shifted forward and 
FFT of the response in the shifted time window is per-
formed again. The amplitude corresponding to each mode 
is then noted for this shifted position of time window. The 
process is repeated several times by shifting the time win-
dows progressively. The amplitudes of the FFT curves 
corresponding to a particular mode in each time window 
are then plotted. It is found that the decay curve for the 
amplitudes corresponding to a mode is logarithmic in na-
ture, which provides the structural damping ratio as, 

( ) ( )11 2 logij j k e j jkξ πη ∆t x x=%           (5) 

where jη is the natural frequency of vibration of ith link in 
its jth mode, and xj1 and xjk are the amplitudes of the vibra-
tions in the 1st and kth time windows of the response. 
Moreover, k∆t is the shift in time for the kth time window 
with respect to the first time window. Alternatively, the 
amplitude decay of the peaks of the FFT curves for the 
corresponding frequencies are plotted against time on a 
semi-logarithmic scale. The slope of the curve divided by 
the corresponding natural frequency of the mode gives the 
structural damping ratio for the particular mode at hand. 
The method is now illustrated in Section 4 using example 
of a single flexible link clamped at one end and undergo-
ing natural vibrations. 

3.2.2 Critical damping factor: Modal analysis 
The matrix of critical structural damping factors, iζ of eq. 
(4b), is obtained here by the modal analysis of the link and 
is given by  
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        didii ΜΚζ ~~2=                                 (6a) 
where the ( ) ( )iiii mmmm +×+ dimensional diagonal ma-

trices, diΚ~ and diΜ~ , are respectively the modal stiffness 
and modal mass matrices of the ith link. For a link vibrating 
in space in all three directions, namely, X, Y and Z, in mi 
modes, diΚ~ and diΜ~ are the ( ) ( )iiii mmmm +×+ 33  ma-
trices, which can be written using the modal analysis as 
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where EiIi and ρi are respectively the flexure stiffness and 
mass per unit length of the ith link, and imO  is 

the im × im zero matrix due to the absence of torsional vi-

bration. The ii mm × dimensional matrices, x
iS , y

iS and 
z
iS ; and x

iS , y
iS , and z

iS , are the matrices associated 

with the shape functions for the vibrations about 1
ˆ
+iX -, 

1
ˆ
+iY - and 1

ˆ
+iZ - axis: The axes are indicated in Fig. 1. 

Thus,  
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where for, j= im ..., 1, , x
ji,s is the shape function of the ith 

link in its jth mode. The ii mm × dimensional matrices y
iS , 

z
iS , y

iS , and z
iS are defined similarly for the shape func-

tions associated with vibrations about 1
ˆ
+iY  and 1

ˆ
+iZ -axes. 

As mentioned above, the links are considered to vibrate 
about the joint axis only, the vibrations about 1

ˆ
+iX , 1

ˆ
+iY  –

axes are neglected, i.e., the matrices, x
iS ,  y

iS , x
iS , 

and y
iS vanish, and diΚ~ and diΜ~ be-

come ( ) ( )iiii mmmm +×+  dimensional matrices  
 
 
 
 
 
 Fig1:geometry of the links 
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where ii mm × dimensional matrices z
iS and z

iS , are de-
fined similar to eq. (6d). 

4 An Illustration: 

First the method of determining joint damping coefficients 
is presented, followed by the structural damping coeffi-
cients of damping coefficients 

4.1  Joint damping 
The method of determination of the joint damping coeffi-
cient, iκ , as presented in Section 3.1, is now illustrated 
using an example of a single rigid link falling freely under 
gravity. The only scalar equation of motion represented in 
the form of eq. (1) is given by / 33ρa θ τ κ θ= +&& & where 
ρ , a, θ , and τ are respectively the mass per unit length, 

link length, joint angle, and the external torque due to 
gravity, whereas κ  is the associated joint damping coeffi-
cient of the system, that will be determined from the ex-
perimental data and using eqs. (3a-c). The scheme of the 
experiment conducted is shown in Fig. 2 using a 0.33m 
long, carbon steel beam with cross-section 0.018×0.004m2 
and mass 0.180Kg, hinged by a revolute joint. The angular 
displacement of the link is measured using the 10 KΩ , 
±0.25% linearity, wire-wound pot wire-pot potentiometer, 
mounted at the joint. The link is allowed to fall freely un-
der gravity from an initial position of 7° from the vertical. 
The corresponding angular displacement of the link, as 
measured by the potentiometer, is shown in Fig. 3. The 
ratio of the successive amplitudes of oscillations is ob-
tained from it and used in eqs. (3b) to obtain the damping 
ratio, 0142.01 =ξ , whereas the critical damping factor 

associated with the joint, namely, 1κ , is obtained from eq. 
(3c) using the physical parameters of the link and its 
  
 
 
 
 
 
 
 
 
 
 
 
 

Zi 
Yi+1 

# i 
Xi+1 

width 

height 

length 

Figure 2 Experimental set-up for the single rigid link

CRO pot 

PC 

rigid link

Supply 0.33m 
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natural frequency, fη , as obtained from the experimental 

results. The value of 1716.21 =κ Kg/s . The joint damp-

ing coefficient, 1κ , is then obtained from eq. (3a) as 
0.0308Kg/s for the single rigid link under study. The joint 
damping coefficient, 1κ , is next incorporated into eq. (1) 
and the simulation for the same initial conditions is re-
peated. The resulting angular variation is plotted in Fig. 3 
and compared with those obtained from the experiments. It 
is seen that the experimental and simulation results match 
closely, thus, verifying the modeling technique of the joint 
damping in the dynamic model. The frequency of oscilla-
tion is also obtained from the Fourier transform of the ex-
perimental response for the joint angles. This is obtained 
as 0.96Hz, while the frequency of oscillation of the link, as 
obtained from the simulation results is 1.0Hz, which is a 
good match. 

 
Figure 3: Simulation results for single rigid link 

4.2  Structural damping 
The method of determining structural damping coeffi-
cients, as presented above, is now illustrated using an ex-
ample of a single flexible link. In order to illustrate the 
methodology for estimation of the damping due to struc-
tural stiffness of the links, vibrations of a cantilever type 
flexible beam, clamped at one end, Fig. 4 is considered 
under natural conditions. Since such a beam does not oscil-
late, i.e., does not have any joint motion, the joint damping 
is absent. Moreover, the beam is kept in such a way that it 
vibrates in vertical plane only. For the 

Table 1: Experiment with a single flexible link 
(a) Physical parameters of the link 

Material Length Cross-section Mass Flexure 
stiffness 

Spring 
steel 

0.33m 0.024×0.001m2 0.060Kg 0.4 Nm2 

(b) Specifications of the equipments 
Equipment Specifications 

Accelerometer 0.024×0.001m2 
Charge amplifier Bruel and Kjaer, 2635;  

Lower frequency cut-off: 2Hz; 
Higher frequency cut-off: 30Hz; 
Calibration factor: 100mV/mm; 
Charge sensitivity: 1.003pC/ms-2; 
Voltage sensitivity: 0.88mV/ms-2 

Data acquisition sys-
tem 

Agilent, 54621oscilloscope;  
60MHz, 200MSa/s 

 
 
 
 
 
 
 
 
 

 

Figure 4: A beam type link clamped at one end. 

purpose of modeling, only first two modes are considered. 
Correspondingly, the determination of the structural damp-
ing coefficient in first two modes is shown here. The 
physical parameters of the link and the set-up are pre-
sented in Table 1. The physical dimensions and the mass 
properties of the link are so selected that the flexibility 
characteristics of the link are prominent. An accelerometer 
is mounted at the end of the beam, as indicated in Fig. 4 to 
record the amplitude response. The output of the acceler-
ometer is amplified using a charge amplifier and the read-
ings are taken on an oscilloscope. 
For a single flexible link vibrating in its first two modes, 
equations of motion, eq. (1), are expressed as, 
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where ρ is the mass per unit length, a is the link length,θ is 
the joint angle, d1 and d2 are the generalized coordinates of 
the link vibrating in 1st and 2nd modes, respectively. More-
over, the terms, θτ , 1dτ and 2dτ are respectively the corre-
sponding generalized forces corresponding to the general-
ized coordinates, θ, d1 and d2 . The terms, s

1dτ and s
2dτ are 

the terms due to strain energy. The expressions 
for s

1dτ and s
2dτ are given in [18, 19] , whereas j1k and j2k , 

for j=1, 2, are the constants associated with the shape func-
tions, i.e.,  

2
1

0

d
a

j jk s a≡ ∫ and 2
0

d
a

j jk s a≡ ∫                  (7b) 

in which js  is the shape function of the link in jth 
mode. Since there is only one link, i=1, which is 
omitted from the ensuing expressions to reduce 
clumsiness. Furthermore, κ  is the joint damping 
coefficient, and jζ , for j=1, 2, is the associated 
structural damping coefficient of the link which 

0.001m 

Charge Amplifier CRO 

Flexible link 
Accelerometer 

0.024m 

0.33m 

(7a) 
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will be determined here from the experimental data. The 
scheme of the experiment is shown in Fig. 4. Correspond-
ing to the two modes of vibrations, the structural damping 
coefficients are given by, jjj ζξζ = , for j=1,2, in 

which jξ
~ and jζ are respectively the structural damping 

ratio and critical damping factor associated with vibration 
in the jth mode. To determine the structural damping coef-
ficients of the link, tip of the link is deflected by a known 
displacement (0.015m) and released to vibrate in its natu-
ral condition. The amplitude decay curve of the link, as 
obtained from the accelerometer, is shown in Fig. 5(a). 
The structural damping coefficient, jζ , is then estimated 

by first determining the structural damping ratio jξ
~

 using 
the method of evolving spectra explained in Sub-
subsection 3.2.1. A time window of 0.05 sec is selected. 
Two such positions of the time window, namely, the 1st 
and 4th, are shown in Fig. 5(a). In order to eliminate the 
manual errors during initialization of experiments the data 
for damping is estimated from the response of the beam 
after 0.05s. FFT of the responses in different time win-
dows are plotted to get Fig. 5(b). Figure 5(b) is called as 
the waterfall plot. For clarity of representation, FFT re-
sponses in only four locations of time window are shown. 
The peaks in the FFT curves are located corresponding to 
the natural frequencies of the link, the amplitudes of the 
successive peaks on a particular natural frequency are now 
noted. Since the determination of structural damping coef-
ficients is performed for the first and second modes, ampli-
tudes of the successive peaks, namely, x1 and x2 for the 1st 
mode, as shown in Fig. 5(b), are noted. Then, using eq. (5) 
the structural damping ratio 1

~
ξ is calculated. Note that, the 

first subscript i is omitted as there is only one link. Simi-
larly, the ratio for the 2nd mode, 2

~
ξ , is obtained. Alterna-

tively, the amplitude decay of the peaks of the FFT curves 
for the 1st and 2nd natural frequencies are plotted against 
time on a semi-logarithmic scale, as shown in Fig. 5(c). 
The slope of the curve divided by the corresponding natu-
ral frequency of the mode gives the structural damping 
ratio for the particular mode at hand. For the link under 
study, the latter methodology, i.e., Fig. 5(c), is used, which 
results in 1980.0

~
1 =ξ and 0428.0

~
2 =ξ . Next, the critical 

damping ratios, jζ , for j=1, 2, are calculated using the link 
length a, the shape functions, and eq. (6a). The values are 

2
1 6.9 10ζ −= × Kg/s and 3

2 6.5 10ζ −= × Kg/s. Finally, the 
structural damping coefficient, jζ , is obtained for j=1, 2, 

using jjj ζξζ
~

=  as 2
1 1037.1 −×=ζ Kg/s 

and 3
2 108.2 −×=ζ Kg/s. They are then incorporated into 

the eq. (7a). Simulation is then performed using eq. (7a) 
with the following initial conditions: Since the tip of the 
link is initially deflected by a known amount, u, i.e, 
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(a) Amplitude response of the tip 

 
(b) FFT of the amplitude responses 

 
(c) Decay of amplitude of vibrations 

Figure 5: Determination of structural damping ratio 
 

 
Figure 6: Comparison of simulation and experimental re-

sults 

0.05-0.10: 1st location of time window 
0.20-0.25: 4th location of time window 

x 2
 

1st 
d

2nd 
d

x 1
 



13th National Conference on Mechanisms and Machines (NaCoMM07), 
IISc, Bangalore, India, December 12-13, 2007  NaCoMM-2007-83 

 311 

where, for j=1, 2; z
js  is the shape function associated with 

the bending of the link in jth mode and evaluated at a, i.e., 
the tip of the link, which is known. Assuming d2=0, d1 is 
evaluated. Now, in order to use eq. (7a) for the simulation, 
θ is always zero since one end of the link is clamped. Ac-
cordingly, 0θ θ= =& && . Also, initially, 1 2 0d d= =& & . Simula-
tion results for the tip-deflection of the link thus obtained 
are then compared with those obtained experimentally, as 
in Fig. 6. It is clear from the plots that the experimental 
and simulation results match closely, thus verifying the 
values for the structural damping coefficients as correct.  

5  Simulation 
In this section, a single flexible-link hinged on a revolute 
joint and falling freely under gravity is considered as a 
simple representative of a robotic system having both joint 
and structural damping. The simulation results, obtained 
using eq. (1), are presented and compared with the ex-
perimental results. The flexible link used as moving arm is 
the same as used in Subsection 4.2. The scheme of the 
experiment, to obtain the data corresponding to damping 
coefficients, is shown in Figs. 7. The physical parameters 
of the link and the experimental set-up are shown in Table 
1(a). The joint displacement of the link is measured using 
a 10 KΩ , ±0.25% linearity, wire-wound potentiometer 
placed at the joint. The deflection at the tip of the link is 
measured using a full strain-gauge Wheatstone bridge 
mounted at the root of the link. Two 350Ω , 100% gain, 
strain gauges are mounted on each side of the link so that 
the proper conditioning of the readings is obtained giving 
the deflection direction correctly. The strain-gauge signals 
are amplified using an ADAM-3016, DIN rail-mounted, 
amplifier and the output is taken on the PICO CRO with 
Pentium IV Intel processor computer. The strain gauge 
readings are calibrated by giving beam a series of known 
deflections and measuring the corresponding strain gauge 
readings. It is seen that the bridge exhibits linear character-
istics in the range of deflection [19]. To perform the ex-
periment, the link is allowed to fall freely under gravity 
from the horizontal position, as per Fig. 7, with no initial 
deflection and no external torque applied on it. The angu-
lar displacement of the joint was measured by the potenti-
ometer, and the tip deflection of the link using the  
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(c) Tip deflection : Simulation results 

Figure 8: Free fall results of a single flexible link 

strain-gauges. The results are shown in Fig. 8(a-b). To 
obtain the simulation results, joint damping coefficient, 
and structural damping are first calculated respectively 
as 0.0106=κ Kg/s and 

2
1 1037.1 −×=ζ Kg/s,

3
2 108.2 −×=ζ Kg/s using the 

scheme presented in Section 3. The damping factors were 
then incorporated into eq. (7a) and the free-fall simulation 
results were obtained. Initial conditions for simulation are 

taken as, 0 0; 2121 ====== ddθddθ &&&
. Figures 8 (a-c) 

show the comparison of the experimental and simulation 
results for the joint angle and tip deflection of the link, 
respectively. The fast fourier transformation, i.e., FFT, of 
the experimental results, Figs. 8(a-b) show an oscillation 
frequency of 1.1Hz and the tip vibration frequency of 
20.5Hz., respectively. From the simulation results, the 
joint oscillation and tip vibration frequencies are 1.1Hz is 
21Hz, respectively. Also, the amplitudes of joint oscilla-
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tions and tip vibrations also match closely, particularly 
during the first three-four cycles. The mismatch in the 
peak height values is attributed to the fact that the real 
beam vibrates in all possible modes of vibration, whereas 
the simulation considered only for first two modes of vi-
bration. The worsening of results in the latter part is 
mainly due to linear decay considerations of the damping 
factors given by eqs. (3-4). 

6  Conclusions 

A methodology for the accurate estimation of the damping 
characteristics of rigid-flexible robotic systems, using the 
data obtained from a series of experiments, is presented 
here. Procedures for the determination of both joint and 
structural dampings are presented. The joint damping is 
estimated using the logarithmic decay of joint rotation. For 
measuring the structural damping, modal analysis is used 
to estimate the critical structural damping coefficient, and 
the method of evolving spectra to find the structural damp-
ing ratio. Since, for a flexible beam, the structural damping 
ratio corresponding to its various modes of vibrations are 
coupled with each other particular emphasis is laid on the 
proposed method of evolving spectra for the estimation of 
structural damping ratios. The method is also illustrated 
using a flexible beam, clamped at one of its ends, undergo-
ing natural vibrations. It is shown that the experimental 
results match closely with simulation results. Typical ad-
vantages of the proposed method are as follows: 1) The 
method involves simple experiments which do not need 
any sophisticated equipments. Infact even with the simple 
equipments like accelerometer, strain-gauges, potentiome-
ters, etc. it is possible to obtain the necessary data with fair 
accuracy. 2) The variation in the time varying amplitudes 
of the vibrations are obtained which is useful for building 
up the control algorithm for reduced vibration. 
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