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Abstract

This paper is concerned with the dynamic analysis of flex-
ible, non-linear multi-body beam systems. The focus is on
problems where the strains within each elastic body (beam)
remain small. Based on geometrically non-linear elasticity
theory, the non-linear 3-D beam problem splits into either a
linear or non-linear 2-D analysis of the beam cross-section
and a non-linear 1-D analysis along the beam reference line.
The splitting of the three-dimensional beam problem into
two- and one-dimensional parts, called dimensional reduc-
tion, results in a tremendous savings of computational effort
relative to the cost of three-dimensional finite element anal-
ysis, the only alternative for realistic beams. The analysis of
beam-like structures made of laminated composite materials
requires a much more complicated methodology. Hence, the
analysis procedure based on Variational Asymptotic Method
(VAM), a tool to carry out the dimensional reduction, is used
here.

The analysis methodology can be viewed as a 3-step
procedure. First, the sectional properties of beams made
of composite materials are determined either based on an
asymptotic procedure that involves a 2-D finite element non-
linear analysis of the beam cross-section to capture trapeze
effect or using strip-like beam analysis, starting from Clas-
sical Laminated Shell Theory (CLST). Second, the dynamic
response of non-linear, flexible multi-body beam systems is
simulated within the framework of energy-preserving and
energy-decaying time integration schemes that provide un-
conditional stability for non-linear beam systems. Finally,
local 3-D responses in the beams are recovered, based on
the 1-D responses predicted in the second step. Numeri-
cal examples are presented and results from this analysis are
compared with those available in the literature.

Keywords: comprehensive, geometrically non-linear,
VAM, flexible multi-body beam systems, and unconditional
stability

1 Introduction

This paper is concerned with the dynamic analysis of flexi-
ble, non-linear multi-body systems, i.e. a collection of bod-
ies in arbitrary motion with respect to each other while each
body is undergoing large displacements and rotations with
respect to a body attached frame of reference. The focus is
on problems where the strains [1] within each elastic body
remain small.

Typical beam analyses used in multi-body formulations
rarely account for such basic effects as the shear center be-
ing offset from the sectional center of mass. The analysis of
beam-like structures made of laminated composite materials
requires a much more complicated methodology. Because
of this complexity, it is common to find treatments of sim-
ple cross-sectional shapes (strips, box-beams, I-beams, etc.)
as pointed in a review article by Hodges [2]. In the work
of Berdichevsky [3], the three-dimensional elasticity repre-
sentation of a beam was shown to give rise to two separate
problems: a linear two-dimensional problem over the beam
cross-section, which provides a set of elastic constants (el-
ements of linear stiffness matrix) and a set of “recovering
relations” for three-dimensional displacements, strain, and
stress; and a non-linear one-dimensional problem along the
beam reference line.

An extension of this methodology to generally anisotropic
and inhomogeneous beams was undertaken by Cesnik and
Hodges [4]. For the analysis of arbitrary beams (excluding
those with thin-walled, open cross-sections) made of lami-
nated, composite materials, a fully populated 4×4 matrix of
elastic constants is found in the analysis of [4]. This linear
cross-sectional analysis was generalized by Wenbin Yu [5].

Cross-sectional analyses are usually linear, but there are at
least a couple of exceptions. Harursampath and Hodges [6,
7, 8] studied the bending of thin-walled, hollow, circular
tubes, which leads to a non-linear moment-curvature rela-
tion. More commonly studied is the trapeze effect, a non-
linear effect, which is typically included in the analyses
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of rotating structures such as helicopter rotor blades, pro-
pellers, and turbomachinary blades because of the presence
of large centrifugal forces. It leads to an effective torsional
rigidity that varies with axial force. The trapeze effect is
caused by non-linear extension-twist coupling in beams un-
dergoing large axial forces and is caused by the presence of
certain non-linear terms in the strain field because of moder-
ate local rotation (Chapter 3 of [9]).

The equations of motion resulting from the model-
ing of multi-body systems present distinguishing features:
they are stiff, non-linear, differential-algebraic equations.
The stiffness of the system stems from the presence of
high frequencies in the elastic members, but also from
the infinite frequencies associated with the kinematic con-
straints. The dynamic response of non-linear, flexible multi-
body beam systems is simulated within the framework
of energy-preserving and energy-decaying time integration
schemes [10, 11, 12, 13] that provide unconditional stability
for non-linear systems. The local three-dimensional stresses
in the beams are recovered based on the stress resultants pre-
dicted in the non-linear analysis over the beam cross-section.

2 Comprehensive Non-Linear Dy-
namic Analysis of Multi-Body
Composite Beam Systems

To analyse the composite beam completely using VAM, one
has to perform a fully non-linear analysis to get the 3-D re-
sponse of the beam. This work is based on geometrically
non-linear theory assuming the material linearity. Early
analyses of anisotropic beams are using the linear stiffness
matrix, output from the linear cross-sectional analysis. This
is the input to the 1-D non-linear analysis codes to get the
final non-linear response of the beam and it is compared
with the results of 3-D finite element analyses (FEA). From
this one don’t get the fully non-linear solution, which is an
ad hoc assumption. In the present analysis, without any
ad hoc assumptions one can get the fully non-linear 3-D re-
sponse of the beam and these results can be compared with
the existing 3-D FEA results.

This complete analysis is a three-step procedure. First,
one has to perform non-linear cross-sectional analysis keep-
ing all 1-D strain measures equal to zero and get the stiffness
matrix. Second, input this stiffness matrix to the 1-D code
and perform 1-D non-linear analysis. Update this stiffness
matrix and input the updated one and repeat the process till
the 1-D strain measures converges and run 1-D code for fi-
nal 1-D responses. Third, local 3-D responses in the beams
are recovered, based on the 1-D responses predicted in the
second step. The complete analysis formulation is described
as below with some formulae for completeness. The basic
steps of the present approach is illustrated in Fig. (1).

Figure 1: Flow-chart of Variational Asymptotic Analysis of
Composite Beam Systems

2.1 Non-Linear 2-D Analysis of the Beam
Cross-section

The non-linear 2-D analysis of the beam cross-section can
be done in two-different ways using VAM. First, using the
Finite Element Analysis (FEA) code Variational Asymptotic
Beam Sectional Analysis (VABS) for trapeze effect and then
compute the non-linear stiffness matrix. Second, the strip-
beam analysis starting from Classical Laminated Shell The-
ory (CLST) and then compute the non-linear stiffness ma-
trix. The presented results are based on the first approach
and is described below with some necessary equations for
completeness.

2.1.1 Using Finite Element code VABS

The purpose of the non-linear analysis of the beam cross-
section is to determine the elements of the non-linear stiff-
ness matrix SNL and the recovering relations. The non-linear
beam cross-sectional stiffness matrix, SNL, relates the cross-
sectional stress resultants f ? to the generalized strain mea-
sures e?, a 1-D constitutive law. Recovering relations pro-
vide the relationship between the strain tensor components
and the generalized strain measures e?. In the present nota-
tion, the 1-D constitutive law can be written as

f ? = SNLe? (1)
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where f ? = [F1 F2 F3 M1 M2 M3]
T with F1 as the axial

force, F2 and F3 as transverse shear forces, M1 as the
twisting moment, M2 and M3 as the bending moments; e?

= [γ11 2γ12 2γ13 κ1 κ2 κ3]
T with γ11 as the axial stretching

measure of the beam, 2γ12 and 2γ13 as transverse shear
measures, κ1 as the elastic twist per unit length, κ2 and κ3

as elastic components of the curvature.
The 3-D strain energy density or the strain energy per unit

volume

U3D =
1
2

ΓT D Γ (2)

This 3-D strain energy density implies a stress-strain law of
the form

σ = D Γ (3)

where σ = [σ11 σ12 σ13 σ22 σ23 σ33]
T is the 3-D stress vec-

tor and Γ = Γ(x1,x2,x3) = [Γ11 2Γ12 2Γ13 Γ22 2Γ23 Γ33]
T

is the non-linear 3-D strain vector, D is the 6×6 symmet-
ric material matrix in the oblique cross-sectional system and
x1 is the Cartesian coordinate along the axis of a beam and
xα(α=2,3) are the Cartesian coordinates for a cross-section.
Now the strain energy of the beam cross-section or the 1-D
strain energy density or the strain energy per unit length or
the strain energy density of the beam

U1D = 〈U3D〉 =
1
2
〈ΓT D Γ〉 (4)

and the notation 〈•〉 ≡ R

s •
√

g dx2dx3 is used throughout
the formulations for oblique cross-sectional analysis, g is
the determinant of the metric tensor of the undeformed
geometry with

√
g = β11−x2k3 +x3k2 where βi j(i, j=1,2,3)

is the direction cosine matrix of the oblique cross-section
with βα = sin−1(β1α) (α=2,3) and β2

11 + β2
22 + β2

33=1,
kα (α=2,3) are the components of the curvature of the refer-
ence line and here s is the domain stretched by undeformed
cross-section.

Then the strain energy functional, U1D, modified to in-
clude the “trapeze effect” terms, also contains third-order
terms in the generalized strains. The general form is

U1D =

1
2
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(5)
where Aγ11

,Bκ1 ,Cκ2 ,Dκ3 and Aγ11 ,Bκ1 ,Cκ2 ,Dκ3 are 4×4
non-classical stiffness matrices. Finally, the column matri-
ces for 1-D strains, the non-linear 1-D strains and the warp-
ing are given by

ε = [γ11 κ1 κ2 κ3]
T

ε = [γ11 κ1 κ2 κ3]
T

εNL = [γ 2
11 κ 2

1 κ 2
2 κ 2

3 γ11κ2 γ11κ3 κ2κ3]
T

εNL = [γ 2
11 κ 2

1 κ 2
2 κ 2

3 γ11κ2 γ11κ3 κ2κ3]
T

w = [w1 w2 w3]
T (6)

Here the barred quantities γ11,κ1,κ2 and κ3 relate to their
unbarred counterparts as

(•) = (•)|2γ12=2γ13=0 (7)

The cross-sectional stiffness matrix is obtained by express-
ing the resultant forces on the beam cross-section as

R ∆
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(8)

This is the most general form of the cross-sectional analysis
for class S and class T beams.

2.2 Non-Linear 1-D Beam(s) Analysis

Beams can be defined as elastic bodies whose volume is
that spanned by a cross-section translating along a smooth
reference line. The beam is divided into line elements
and geometrically-exact non-linear beam theory, based on
mixed variational formulation, is used to perform the analy-
sis. Combine and perform these two-analyses, non-linear 2-
D cross-sectional analysis and non-linear 1-D beam analysis
along the beam reference line, gives the non-linear elemen-
tal stiffness matrices. Since this matrix is a function of 1-D
strain variables one has to repeat the process till it converges.
Using these converged 1-D strain vector or 1-D generalized
strains, find the final non-linear elemental stiffness matrices
and again run 1-D code to get all final 1-D responses.

The dynamic response of non-linear, flexible multi-body
systems is simulated within the framework of energy-
preserving and energy-decaying time integration schemes
that provide unconditional stability for non-linear systems.
The kinematic description of bodies and joints in their unde-
formed and deformed configurations are make use of three
orthogonal triads. First, an inertial triad, SI , is used as a
global reference for the system with unit vectors~ı1,~ı2, and~ı3.
A second triad, S0, is attached to the body and defines its
orientation in the reference configuration with unit vectors
~e01, ~e02, and ~e03. Finally, a third triad, S ∗, defines the ori-
entation of the body in its deformed configuration with unit
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vectors ~e1,~e2, and~e3. The kinetic and strain energies of the
beam are

K =
1
2

Z L

0
υ∗T M∗υ∗ dx1; V =

1
2

Z L

0
e∗TC∗e∗ dx1 (9)

respectively. Where L is the length of the beam; x1 is the
curvilinear coordinate along the reference line; M∗ and C∗

are the components of the sectional inertial and stiffness ten-
sors respectively; and υ? and e? are the components of the
sectional velocity and strain vectors respectively. The super-
script (•)∗ is used to denote tensor components measured in
its deformed configuration. The equations of motion of the
beam from Hamilton’s principle is as follows:

Z t f

ti

Z L

0
(δυ∗T M∗υ∗ − δe∗TC∗e∗ + δW a) dx1 dt = 0 (10)

where δυ∗T and δe∗T are virtual variations in sectional ve-
locities and strains, respectively, δW a is the virtual work
done by the externally applied forces. The final form of
equations of motion of the beam are as follows:

(R R0 p∗)· + U[ ˜̇u] R R0 p∗− (R R0 f ∗)′

−U[ũ′0 + ũ′]) R R0 f ∗ = q (11)

where the sectional momenta and elastic forces are defined
as p∗ = M∗υ∗ and f ∗ = C∗e∗ respectively; and q are the
external forces. An energy-preserving discretization of these
equations of motion Eq. (11) is performed. The inertial
and elastic forces are discretized to yield the following
discretized equations of motion

R f R0 p∗
f
− RiR0 p∗

i

∆t
+ U[

ũ f − ũi

∆t
] RaR0

p∗
f

+ p∗
i

2

− (RbR0 f ∗
m
)′ − U[ũ′0 + ũ′m]) RbR0 f ∗

m
= q

m
(12)

where (•)m = ((•) f +(•)i)/2; and all the rotation operators
and the discretization of finite rotations are defined in Ap-
pendix A & B of [4].

In the formulation of flexible joint elements, the
strain energy in the flexible joint is defined as follows:

V =
1
2

s∗TC∗s∗ (13)

where C∗ are the components of the flexible joint stiffness
tensor and s, inducing deformations in the flexible joint in
terms of relative displacements (u = uk −ul) and relative ro-
tations (δψ = δψk − δψl) of the two bodies (•)k and (•)l .
The energy-preserving formulation for flexible joints con-
sists of the elastic force discretization together with the fol-
lowing constitutive laws:

f ∗
m

= C∗(s∗f + s∗i )/2 (14)

In the formulation of constraint elements, for the case of
revolute joint elements, using the properties of the revolute
joint develop all kinematic constraints. The following two

kinematic constraints in the deformed configuration are de-
fined as follows from the condition of no relative displace-
ments are allowed.

C1 = g31 = ekT
3 el

1 = 0 (15)

C2 = g32 = ekT
3 el

2 = 0 (16)

The third constraint obtained from the definition of the rela-
tive rotation φ between the two bodies is defined as follows:

C3 = g11 sinφ + g12 cosφ = 0 (17)

where g11 = ekT
1 el

1 and g12 = ekT
1 el

2; and the components of

vector ~(•) measured in SI and S ∗ denoted by (•) and (•)∗,
respectively.

3 3-D Recovery Analysis

To recover 3-D results at a specific section, one need to pro-
vide additional information obtained from the 1-D global
beam analysis along with 2-D warping & strain recovery re-
lations, a bi-product of 2-D cross-sectional analysis. One
can carry out 3-D recovery based on the classical model
or the generalized Timoshenko model or the generalized
Vlasov model. The input given is different from model to
model.

4 Numerical Example(s)

4.1 The four bar mechanism problem

The numerical example deals with a four bar mechanism
problem depicted in Fig. (2). Bar 1 is of length L1 = 0.12 m
and is connected to the ground at point A by means of a rev-
olute joint. Bar 2 is of length L2 = 0.24 m and is connected
to bar 1 at point B with a revolute joint. Finally, bar 3 is of
length L3 = 0.12 m and is connected to bar 2 and the ground
at points C and D, respectively, by means of two revolute
joints. In the reference configuration the bars of this planar
mechanism intersect each other at 900 angles and the axes
of rotation of the revolute joints at points A,B, and D are
normal to the plane of the mechanism. However, the axis
of rotation of the revolute joint at point C is at a 50 angle
with respect to this normal to simulate an initial defect in the
mechanism. A torque is applied on bar 1 at point A so as
to enforce a constant angular velocity Ω = 20 rad/sec. If
the bars were infinitely rigid, no motion would be possible
as the mechanism locks. For elastic bars, motion becomes
possible, but generates large internal forces. The physical
characteristics of the three bars are tabulated in Table 1.

The Saint-Venant torsion constant J is calculated
from the following equation.

J =
ba3

3
− 64a4

π5

∞

∑
n=0

tanh( knb
2a )

(2n+1)5 (b ≥ a) (18)

where kn = (2n+1)π
a and b,a are the cross-sectional dimen-

sions along x2,x3 directions, respectively. The approximate

4
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Figure 2: The four bar mechanism problem

Table 1: The physical characteristics of the three bars of the
four bar mechanism

Bar 1:
Axial stiffness: EA = 40 MN
Bending stiffnesses: EI22 = EI33 = 0.24 MN.m2

Torsional stiffness: GJ = 0.28 MN.m2

Mass per unit span: m = 3.2 kg/m

Bars 2 & 3:
Axial stiffness: EA = 40 MN
Bending stiffnesses: EI22 = EI33 = 24 kN.m2

Torsional stiffness: GJ = 28 kN.m2

Mass per unit span: m = 1.6 kg/m

value of J can be found from the following expression.

J ≈ 2.249232 a4 for (2a×2a) (19)

The calculated values are tabulated in Table 2, which are
used for cross-sectional analysis. Each cross-section of

Table 2: The calculated values for cross-sectional analysis

Bar 1:
Cross-section: (0.26833 m×0.26833 m)
Young’s modulus: E = 555.55556×106 N.m2

Poisson’s ratio: ν = −0.28
Mass density: ρ = 44.44444 kg/m3

Bars 2 & 3:
Cross-section: (0.08485 m×0.08485 m)
Young’s modulus: E = 5555.55556×106 N.m2

Poisson’s ratio: ν = −0.28
Mass density: ρ = 222.2222 kg/m3

bar 1, 2, and 3 is divided into 100, eight-node isoparamet-
ric finite elements. The stiffness and mass matrices obtained
from the linear cross-sectional analysis of bar 1, 2, and 3 are
given in the Appendix D. The beam 1 and beam 3 reference
line is divided into 2-equal elements each and the beam 2
reference line is divided into 4-equal elements for 1-D non-
linear analysis. For this four bar mechanism problem, the
automated time step size procedure is used. The desired lo-
cal error level is set to be ê = 1.0× 10−06 and a new time
step size is evaluated at each time step [16].

This problem is simulated for a total of 0.5 sec using the
energy-decaying scheme. If the four revolute joints had their
axes of rotation orthogonal to the plane of the mechanism,
the response of the system would be purely planar, and bars
1 and 3 would rotate at constant angular velocities around
points A and D, respectively. The initial defect in the mecha-
nism causes a markedly different response. Figure (3) shows
the time history of the relative rotations at points A and D,
as well as the absolute rotation of the mid-point of bar 2.
Bar 1 rotates at a constant angular velocity under the ef-
fect of the applied torque, but bar 3 now oscillates back
and forth, never completing an entire turn. When the di-
rection of rotation of bar 3 reverses, bar 2 undergoes large
rotations, instead of near translation. Furthermore, the re-
sponse is three-dimensional as shown in Fig. (4) which de-
picts the time history of out-of-plane displacements at points
B and C. Point C undergoes a 3 mm maximum out-of-plane
displacement. The time history of the three components of
the internal force at the root of bar 1 are shown in Fig. (5),
whereas Fig. (6) shows the time history of components of
twisting and bending moments at the same location. The
corresponding quantities at mid-span of bar 2 are shown
Figs. (7) and (8). These large internal forces are all caused
by the initial imperfection of the mechanism.

The large coupling terms in the final non-linear stiffness
matrix of each beam are responsible for large variation in
the non-linear 3-D responses. Figure (9) shows the 3-D
plot of extension-twist coupling coefficient, SNL

14 , of the non-
linear stiffness matrix variation of bar 1. Figure (13) shows
the 3-D plot of 1-D strain vector component, κ1, of bar 1.
Figure (10) shows the 3-D plot of extension-bending in 2-
direction coupling coefficient, SNL

15 , of the non-linear stiff-
ness matrix variation of bar 1. Figure (14) shows the 3-
D plot of 1-D strain vector component, κ2, of bar 1. Fig-
ure (11) shows the 3-D plot of extension-bending in 3-
direction coupling coefficient, SNL

16 , of the non-linear stiff-
ness matrix variation of bar 1. Figure (15) shows the 3-D
plot of 1-D strain vector component, κ3, of bar 1. From these
figures, one can observe that SNL

15 is dominant with maxi-
mum positive value 60,000 followed by SNL

14 with 25,000
and these both terms negative magnitude is same and equal
to 10,000. But SNL

16 both positive negative magnitude equal
to 4,000. So, the elastic bending curvature in 2-direction,
κ2, is more with magnitude 0.07 followed by the elastic
twist, κ1, with magnitude 0.03 of bar 1 and the elastic bend-
ing curvature in 3-direction, κ3, is very less with magnitude
equal to 0.005. The extension of the reference line of bar
1, γ11, with magnitude equal to 0.0002, which is negligi-
ble. Thus, with the applied torque on bar 1 there is no sig-
nificant amount of extension of bar 1. But in the case of
bar 2, SNL

14 and SNL
15 are equally significant compared to the

third term. Similar conclusions can be made as above from
Figs. ((12) and (16); (17) and (21); (18) and (22)) for bar 2.
But in the case of bar 3, SNL

15 is more significant compared to
other two terms. Similar conclusions can be made as above
from Figs. ((19) and (23); (20) and (24); (25) and (29)) for
bar 3. Figures (26), (27) and (28) shows the 3-D plot of 1-D
strain vector component variation of bar 1, 2, and 3, respec-
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tively for linear and non-linear cases. As expected there is no
significant extension of the reference line of all bars. Note
that Figs. (17) to (29) are not included because of space lim-
itation.

It has been observed [17] that the two schemes (EPS &
EDS) are in very close agreement, and yield smooth time
history responses for all quantities. The prediction of the ve-
locities at point C, and the quarter-point forces in bar 1 using
EPS are presented. These results shows that very high fre-
quency oscillations of a purely numerical origin are present
in the predictions of the EPS. The high frequency numerical
dissipation featured by the EDS completely eliminates this
undesirable numerical noise.

5 Conclusions

The results for the four-bar mechanism problem shows that
the dynamic responses for linear and non-linear analyses
are not deviating much because of not having strong cou-
pling terms in the final non-linear stiffness matrices. This
is because of the square cross-section for all three bars in
the mechanism. It has been observed that as the cross-
section departs from a strip configuration, the trapeze ef-
fect becomes less and less important compared to the over-
all torsional rigidity. Using strip-beam analysis, one can see
the large variation in the linear and non-linear dynamic re-
sponses as compared to the problem analyzing with trapeze
effect and will be addressed in future work. In the present
four-bar mechanism problem, cross-sectional nonlinearities
are small eventhough 1-D nonlinearities are large. There
is no convergence difference is observed. However, when
cross-sectional nonlinearities are also become important,
then convergence might be an issue and is corrently being
studied. In the present problem, the 1-D generalized strain
vector converges after 8 iterations. Results obtained & pre-
sented for linear case are using multi-body dynamics soft-
ware DYMORE.
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Figure 3: Time history of rotations of the system.
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Figure 6: Time history of moments at the root of Bar 1, in
local axes.
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Figure 9: 3-D plot of extension-twist coupling coefficient of
the non-linear stiffness matrix variation of Bar 1.
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Figure 10: 3-D plot of extension-bending in 2-direction cou-
pling coefficient of the non-linear stiffness matrix variation
of Bar 1.
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Figure 11: 3-D plot of extension-bending in 3-direction cou-
pling coefficient of the non-linear stiffness matrix variation
of Bar 1.
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Figure 12: 3-D plot of extension-twist coupling coefficient
of the non-linear stiffness matrix variation of Bar 2.
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Figure 13: 3-D plot of 1-D strain vector component variation
of Bar 1.
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Figure 14: 3-D plot of 1-D strain vector component variation
of Bar 1.
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Figure 15: 3-D plot of 1-D strain vector component variation
of Bar 1.
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Figure 16: 3-D plot of 1-D strain vector component variation
of Bar 2.
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