FSP Synthesis of an off-set five bar-slider mechanism with variable topology

Umesh. M. Daivagna1*, Shrinivas. S. Balli 2

1 Department of Mechanical Engineering, S.T.J.Institute of Technology, Ranebennur, India
2 Dept. of Mechanical Engineering, Basaveshwar Engineering College, Bagalkot India

* Corresponding author (email:daivagna_um@rediffmail.com)

Abstract
A method to synthesize an off-set five-bar slider mechanism with variable topology is suggested. Synthesis is carried out in two phases for function generation for three finitely separated positions in phase-I and two finitely separated positions in phase-II. A dyadic complex number method is used to write the equations of motions. Numerical examples are provided.

Keywords: five-bar slider, variable topology, complex numbers

1 Introduction

Four bar-slider crank linkages have been widely used in industrial applications. Current work on five-bar linkages is mainly focused on revolute joint type. Little work has been done on five-bar slider crank linkages. Five bar-slider crank parallel manipulators can be used as effective singularity-free path generators if their dimensions and slider input ranges are properly selected. In this paper an off-set five bar-slider mechanism is synthesized by variable topology method using complex numbers.

A planar off-set five bar-slider mechanism has two degrees of freedom; it has one rotary and one linear independent as input shown in fig.1. A planar off-set five bar-slider mechanism with variable topology is a mechanism of two degrees of freedom that operates in two phases. During Phase-I of operation a link adjacent to the permanently fixed link i.e. crank OaA [fig.2] is temporarily fixed and that result in an off-set single slider crank mechanism of one degree of freedom. The Synthesis procedure is then carried out for three finitely separated positions for the function generation task. The unknown parameters determined in Phase-I synthesis are considered while solving the remaining dimensions in Phase-II [2].

In Phase–II the slider is temporarily fixed in position 3 and the crank is released [fig3]. The resulting mechanism is a four bar mechanism of single degree of freedom. Now the synthesis is carried out for the determination of the other unknown parameters [2, 3 and 4].

In this paper an off-set five-bar slider with variable topology is synthesized. A variable topology synthesis method is suggested as a tool to the graphical method of synthesis suggested by Joshi and Amaranth [8]. Many methods of synthesis like algebraic method, loop closure technique and graphical methods are available for the off-set single slider crank mechanisms and four bar mechanisms. The method of variable topology suggested in this paper reduces the cumbersome calculations of the algebraic methods. It has an increased accuracy over the graphical methods.
2 Variable Topology of Five-Bar Slider Mechanism

A planar off-set five-bar slider mechanism has two degrees of freedom. It is to be synthesized to perform three-position function generation in Phase-I and two-position function generation in Phase-II.

2.1 Phase-I

Three positions of the slider is considered for the synthesis of the unknown parameters Z_1, Z_2 and Z_3. Link OaA is fixed temporarily and the line of action of the slider is off-set at a distance of d_1 from the temporarily fixed pivot A. Here off-set five-bar slider VTM of two-degree freedom becomes off-set slider crank mechanism of one-degree freedom. Consider the trace point as P, when the slider moves from P_1 to P_2 and from P_1 to P_3, the link AB moves through the angles ϕ_1 and ϕ_2 respectively. When the slider moves to position P_3, further motion is ceased. The slider does not move further. In this position the initial position of the Phase-II is considered.

2.2 Phase-II

In Phase-II, the slider is fixed temporarily at P_3 at an off-set distance d_2 from the permanently fixed pivot Oa and the crank OaA is released, resulting mechanism is a four bar mechanism of single degree of freedom. The input link i.e. the crank OaA moves through an angle θ_{34}, link PB moves through an angle β_{34}. The trace point B moves from B_3 to B_4.

3 Synthesis

It is required to synthesize a planar five-bar slider variable topology mechanism; one can have two options as follows:

(i) One end i.e. the crank is fixed temporarily.

(ii) The slider is fixed temporarily.

The conventions to be followed to denote angles in Phase-I and in Phase-II are described in Table No.1 and Table No.2.

Table 1: Parameters used in Phase I

<table>
<thead>
<tr>
<th>Links in terms of Vectors</th>
<th>Phase-I from 1^{st} Position to 2^{nd} Position & from Position 1^{st} to 3^{rd} Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>$OaA = Z_2$</td>
<td>Temporarily fixed link</td>
</tr>
<tr>
<td>$AB = Z_3$</td>
<td>Angles ϕ_{12}, ϕ_{13} (Given parameters)</td>
</tr>
<tr>
<td>$BP = Z_4$</td>
<td>Angles β_{12}, β_{13} (Assumed parameters)</td>
</tr>
<tr>
<td>$AP = Z_5$</td>
<td>Vector from A to P</td>
</tr>
<tr>
<td>$OaP = Z_4$</td>
<td>Vector from fixed point Oa to Slider position.</td>
</tr>
<tr>
<td>$\rho_{12} = Z_{SH} + X_{12}/Z_{SH}$</td>
<td>ρ_{12} & ρ_{13} are Stretch ratios X_{12} & X_{13} (prescribed parameters)</td>
</tr>
<tr>
<td>$\rho_{13} = Z_{SH} + X_{13}/Z_{SH}$</td>
<td></td>
</tr>
</tbody>
</table>

Number of solutions ∞^2
Phase-I and Phase-II described in Table-1 and Table 2 are used to write the dyad equations of the displacements of the slider for function generation.

4.1 Phase-I Synthesis

In function generation problem, the input and output motions ($X_{12}, \phi_{12}, X_{13}, \phi_{13}$) are prescribed. β_{12} and β_{13} are free choices. Therefore there will be ∞^2 number of solutions. Then the unknowns Z_3 and Z_4 and Z_5 are determined in Phase-I as follows:

Using loop closure vector and dyad equations and P as the tracing point we write:

$$Z_5 - Z_{SV} - Z_{SH} = 0 \quad (1)$$

$$Z_3 + Z_4 - Z_{SV} - Z_{SH} = 0 \quad (2)$$

$$Z_3 e^{i\phi_2} + Z_4 e^{i\phi_1} - Z_{SV} - Z_{SH} \rho_j = 0 \quad (3)$$

Subtracting (3) from (2), we get

$$Z_3 (e^{i\phi_2} - 1) + Z_4 (e^{i\phi_1} - 1) - Z_{SV} - Z_{SH} \rho_j = 0 \quad (4)$$

Writing equation (4) for 3 positions of the slider, we have,

$$Z_3 (e^{i\phi_2} - 1) + Z_4 (e^{i\phi_1} - 1) - Z_{SV} - Z_{SH} \rho_j = 0 \quad (5)$$

$$Z_3 (e^{i\phi_3} - 1) + Z_4 (e^{i\phi_1} - 1) - Z_{SV} - Z_{SH} \rho_j = 0 \quad (6)$$

Re writing in the following form,

$$Z_3 (e^{i\phi_2} - 1) + Z_4 (e^{i\phi_1} - 1) = Z_{SH} \rho_j \quad (7)$$

$$Z_3 (e^{i\phi_3} - 1) + Z_4 (e^{i\phi_1} - 1) = Z_{SH} \rho_j \quad (8)$$

Writing in the matrix form,

$$\begin{bmatrix}
 e^{i\phi_2} - 1 \\
 e^{i\phi_3} - 1 \\
\end{bmatrix}
\begin{bmatrix}
 Z_3 \\
 Z_4 \\
\end{bmatrix}
= \begin{bmatrix}
 X_{12} \\
 X_{13} \\
\end{bmatrix} \quad (9)$$

Let $\delta = \begin{bmatrix}
 e^{i\phi_2 - 1} \\
 e^{i\phi_3 - 1} \\
\end{bmatrix}$

Then, Z_3 and Z_4 are determined as followed

$$Z_3 = \frac{X_{12} (e^{i\delta_{12} - 1})}{\delta} \quad (11)$$

$$Z_4 = \frac{X_{13} (e^{i\delta_{13} - 1})}{\delta} \quad (12)$$

From loop closure equation we have,

$$Z_3 + Z_4 = Z_5 \quad (13)$$

Z_5 is determined.

The constant vector Z_{SV} for which magnitude is equal to the off-set distance d_1, and the variable vector Z_{SH} are determined as follows.

$$Z_{SH} = -Z_5 e^{i\alpha} \cos \alpha \quad (14)$$

$$Z_{SV} = Z_5 e^{i\alpha} \sin \alpha \quad (15)$$

d_1 is magnitude of Z_{SV}

Where α is angle made by the vector Z_5 with X-axis as shown in fig 2. Thus in phase-I, following vectors are determined.

Z_3, Z_4, Z_{SV} and Z_{SH}

4.2 Phase-II Synthesis

When the mechanism moves from position 1 to position 3, it stops and switches to Phase-II. Here OaA is released and the slider is temporarily fixed. Now the mechanism becomes a four bar mechanism of single degree of freedom. Here the input angle is θ_{34}, the output link PB describes

It is required to coordinate the angular motion between the input link 2 and the output link 4 for the function generation. Hence the prescribed parameters are β_{34} and θ_{34}. Assuming the coupler angle ϕ_{34} for the link 3, the only unknown Z_2 i.e. the link OaA and Z_4 are determined for two position function generation by taking the tracer point as B. The number of solutions is ∞^1. Hence total number of solutions will be ∞^3. Writing dyadic equations, we have

$$Z_2 (e^{i\beta_2 - 1} + Z_3 (e^{i\beta_3 - 1}) = Z_4 (e^{i\beta_4 - 1}) \quad (16)$$

Here the only unknown is Z_2 and it is determined.

$$Z_4 = \frac{(e^{i\beta_4 - 1})}{Z_2} \quad (17)$$

By loop closure equation, we have,

$$Z_2 + Z_3 (e^{i\beta_3}) + Z_4 (e^{i\beta_4}) - Z_6 = 0 \quad (18)$$

Hence $Z_6 = Z_2 + Z_3 (e^{i\beta_3}) + Z_4 (e^{i\beta_4}) \quad (19)$

The off-set distance d_2 is determined as followed.

$$d_2 = Z_6 \otimes (e^{i(\gamma - \gamma)}) \quad (20)$$

Where, γ is the angle made by the vector Z_6 with x-axis.

Also, Z_1 Vector is determined by the closed loop vector equation as given in (21).

$$Z_1 = Z_2 + Z_3 + Z_4 \quad (21)$$
Hence all the design parameters of the off-set five-bar slider mechanism are determined from Phase-I and Phase-II.

5. Advantages and Limitations

5.1 Advantages
Simplicity and generality are the attractions of the method as compared to other method of synthesis of five bar-slider mechanisms. Unlike graphical method, it is not limited by drawing accuracy. Since the dimensions determined in phase-I are carried to phase-II leading to less calculations. The method can be applied to synthesis of mechanisms for three; four or five infinitesimally separated positions.

5.2 Limitations
The proposed method is applicable only to complex number approach. The synthesized mechanism may suffer from branch, order, Grashof or circuit defects which can be rectified separately.

6. Conclusions and Discussions
The present work suggests variable topology method using dyad techniques for synthesizing a five-bar slider. An analytical method for synthesizing a five-bar slider crank with variable topology for three positions in Phase-I and two positions in Phase-II is suggested for function generation. Complex numbers, which readily lend themselves as an ideal tool for modeling linkage members as parts of planar mechanisms, are used for writing displacement equations for dyads. The coupler point B is displaced from position one to position four that may be used for the application of transfer of object from place one to place four. The mechanism may suffer from branch, order, Grashof or circuit defects which can be rectified separately. As this is synthesized work, the authors will consider the study of the performance of the mechanism in their future work.

Examples

6.1 Example 1:

It is required to synthesize a Five Bar slider with variable topology shown in Fig.1. Given that $\phi_{12} = 22^\circ$ CCW, $\phi_{13} = 45.5^\circ$ CCW, $X_{12} = 25.0$ mm, $X_{13} = 50.0$ mm for phase-I and $\theta_{34} = 40^\circ$ CCW, $\beta_{34} = 29^\circ$ CCW for the phase-II.

6.1.1 Solution:
Phase-I

Assuming $\beta_{12} = -12.76^\circ$, $\beta_{13} = -21.3^\circ$.

From equation (11) we get,

$$Z_3 = (11.4606 + 15.0420i) = 18.9104 \text{ mm} \angle 52.6960^\circ$$

From equation (12),

$$Z_4 = 29.4697 - 54.1962i = 61.6903 \text{ mm} \angle 308.5356^\circ$$

Similarly from equation (13),

$$Z_5 = -40.9302 - 39.1542i = 56.6421 \text{ mm} \angle 316.27^\circ$$

The offset distance is calculated as 33.24 mm using equation (14).

Figure 4: Synthesized off-set Five Slider Mechanism with variable topology for the example 1

6.2 Example 2:

It is required to synthesize a Five Bar slider with variable topology shown in Fig.1. Given that $\phi_{12} = 17.87^\circ$ CCW, $\phi_{13} = 35.33^\circ$ CCW, $X_{12} = 30.0$ mm $X_{13} = 60.0$ mm for phase-I and $\theta_{34} = 63.12^\circ$ CCW, $\beta_{34} = 48.16^\circ$ CCW for the phase-II.

6.2.1 Solution:
Phase-I

Assuming $\beta_{12} = -8.73^\circ$, $\beta_{13} = -15.67^\circ$.

From equation (11) we get,

$$Z_3 = (11.4606 + 15.0420i) = 18.9104 \text{ mm} \angle 52.6960^\circ$$

From equation (12),

$$Z_4 = 29.4697 - 54.1962i = 61.6903 \text{ mm} \angle 308.5356^\circ$$

Similarly from equation (13),

$$Z_5 = -40.9302 - 39.1542i = 56.6421 \text{ mm} \angle 316.27^\circ$$

The offset distance is calculated as 33.24 mm using equation (14).
Phase-II Assuming $\phi_{34} = 2.14^0$, from equation (17) we get $Z_2 = \frac{-4.7491+47.2765i}{47.5145} \angle 95.740^0$

Again from the equation of loop closure (21), we get $Z_1 = 7.0465 \angle 58.9136^0$

The synthesized mechanism is shown in figure 5. The function curves for phase-I and phase-II for the examples are shown in figure 6 and figure 7 respectively.

![Figure 5: Synthesized off-set Five Slider Mechanism with variable topology for the example 2](image1)

![Figure 6: Function curves for phase-I](image2)

![Figure 7: Function curves for phase-II](image3)

References

