13" National Conference on Mechanisms and Machines (NaCoMMO07),

IISc, Bangalore, India. December 12-13, 2007

NaCoMM-2007-099

Robot path planning using silhouette method

Aneeta Bhattacharyya', Ekta Singla?*, Bhaskar Dasgupta?
I University of Calcutta, India
2 Mechanical Department, IIT, Kanpur, India

* Corresponding author (email: ektas @iitk.ac.in)

Abstract

This paper presents an implementation of the silhouette
method of robot path planning. It is a roadmap based method
which consists of generating the silhouette of the work cell,
forming a network of simple semi-free paths by connecting
the silhouette curves to each other and selecting the path
from the start position to the end position, in the configu-
ration space. Dijkstra’s shortest path algorithm is used for
tracing the path between the two given points out of the con-
nected graph. A few examples are presented to show the ef-
ficacy of the algorithm. The value of this method is that it is
complete and it is applicable for a general n-dimensional C-
space, even though the path found by this method is, in gen-
eral, just a feasible one. The examples used in the present
paper are for two-dimensional workspaces, but its planned
continuation into higher dimensions is the actual valuable
outcome of this research.

Keywords: Robot motion planning, Silhouette method, Di-
jkstra’s shortest path algorithm.

1 Introduction

In this era of automation where robots and autonomous ma-
chines are in use for almost every field, may it be assem-
bly layouts, surgical applications or entertainment, develop-
ment of efficient robot-path-planners is surely an important
requirement. The proficiency and suitability of a planner is
evaluated based on the aspects of its completeness, optimal-
ity of the path provided by it and its capability to work in
higher dimensions. General approaches to solve the basic
motion planning problem are Roadmap methods, Cell de-
composition methods and Potential field methods [1]. Ex-
tensive research has been done on the implementation of
these methods.

Roadmap methods, as presented in [2, 3, 4, 5], consists
of constructing the network of free paths in C-space and
searching the path in this network between the desired lo-
cations. These methods are known for their completeness,
i.e., they provide a path if one exists and show failure, oth-
erwise. Though the paths provided by the roadmap methods
are not, in general, optimal, but assurance to get a feasible
path in itself is important for many of the cluttered environ-
ments. Cell decomposition methods consist of successive

decomposition of the robot’s configuration space into cells
of some geometric shape. They mainly work on two strate-
gies, one is by decomposing the workspace exactly into cells
(refer [6]), and another is the approximate decomposition
(see [1, 7]). The former is complete in providing a path for
only lower dimensional C-spaces. Higher order workspaces
are better dealt with approximate cell decomposition meth-
ods, though at the cost of gaurantee to get a path. Absence of
optimality in the paths and involvement of memory exhaus-
tion problems limit the utility of these methods. Potential
field methods claim for generating the optimal paths, though
the path obtained, in general, can be only locally optimal.
The successful results of many researchers [8, 9, 10] show
the successive improvements in this type of methods, partic-
ularly towards global opimality, but still lacking in the aspect
of completeness.

All these issues bring out the fact that motion planning
for robots of any number of degrees of freedom (DOF’s),
working in cluttered environments, is still a problem, that
invites further work. Necessity to get a reliable path planner
which can work with higher dimensions of C-space leads
us to the selection of roadmap methods. Besides, once we
get a path, it can be improved towards optimality by hybrid
methods as discussed in [4, 11].

The roadmap methods which can deal with higher di-
mensional C-spaces came into existence with the develop-
ment of Probabilistic Roadmap Method (PRM), presented
by Kavraki et al [2]. Successful in providing a feasible
path for robots with large DOF’s, this two-phase method got
enough attention by the researchers. However, the two lim-
itations of unnecessary collision checks and narrow passage
problem, raised the need for further research. Sanchez and
Latombe [12] presented an improvement over PRM by pro-
viding a lazy-in-collision-detection technique SBL (Single-
query Bi-directional Lazy in collision detection) PRM. It
avoids pre-computing a roadmap and involves searching the
robot’s free space locally. This helped in reducing the colli-
sion checks and hence the time consumption. However, the
problem of narrow passage still remained. Isto and Saha [3]
and Brock and Kavraki [15] proposed other approaches to
work with higher dimensional C-space.

Katz and Hutchinson [4] emphasized on the narrow pas-
sage problem and proposed a method of integrating the basic
probabilistic path planning with specific potential functions

000

Root
Text Box
 NaCoMM-2007-099

Root
Text Box
000

13" National Conference on Mechanisms and Machines (NaCoMMO07),

IISc, Bangalore, India. December 12-13, 2007

NaCoMM-2007-099

near the narrow passages. This helped not only to make the
robot pass through the narrow passage but also in reducing
the graph searching time. The implementation of the method
is shown only for 2-dimensional cases while the definition of
potential functions for higher dimensional cases may come
out as another problem. Valero and Ceccarelli et al [13, 14]
presented their approach for path planning and implemented
successfully on 2-dimensional redundant manipulators. Sil-
houette method, one of the roadmap methods, presented by
Canny [16], is however free from any narrow passage prob-
lem. This method is considered difficult in implementation,
but its completeness, ability to deal with higher-dimensional
configuration and avoidance of narrow passage problem mo-
tivate us to attempt its implementation. This paper presents
the schematic for implementation of the silhouette path plan-
ning method and presents the results for 2-dimensional C-
spaces.

Section 2 describes the Silhouette method. The algorithm
to implement the method is given in section 3. Section 4
presents some results with their descriptions. The conclu-
sions of the work are summarized in section 5.

2 Silhouette Method

The word ‘silhouette’ literally means a dark shadow or out-
line of an object against a light background. As the name
suggests silhouette path planning technique consists of gen-
erating the silhouette of the work cell and developing the
roadmap by connecting these silhouette curves to each other.
This is a network of semi-free paths which is searched to se-
lect the path from the start configuration to the goal config-
uration.

The n-dimensional configuration space is operated upon
by the recursive approach of sweeping with lower dimen-
sional hyperplanes. At the zero recursion level, a hyperplane
of dimension (n — 1) is swept across the C-space in a direc-
tion perpendicular to the hyperplane, by constant steps. At
each step the extremal points of C-space are marked which
when joined together gives rise to algebraic curves called as
silhouette curves. The extremal points are also connected to
the silhouette curves formed at the previous step, if any.

The network of silhouette curves constructed till this point
is not yet complete. There may remain some of the sets of
extremal points which are not yet included in the network.
These are represented by critical points, the points where
the connectivity of the silhouette curves change. During the
sweep process, whenever a critical point is encountered, a
hyperplane at this point is also included in the set of (n — 1)
dimensional hyperplanes collected at this recursion level.
All these slices are swept by the next-lower-dimensional hy-
perplanes in the next recursion level. The recursion ends
when there is no critical point to connect to the silhouette
curves in the set that is currently swept out, or when the hy-
perplane being swept becomes one dimensional. This leads
to the formation of the silhouette of the entire workspace and
of the obstacles within it.

To find a path from the initial configuration to the goal

configuration, these two points are also considered as crit-
ical points. The path between the two points is traced out
by considering the roadmap as a connected graph and us-
ing a suitable shortest path algorithm. The edge set of the
graph would consist of the algebraic curve segments of the
roadmap and the vertex set would consist of the endpoints of
these curve segments.

3 Implementation

In this paper, an implementation of the silhouette method for
2-dimensional C-space is presented. For this case, sweeping
hyperplane, at zeroth recursion, reduces to a sweep-line. An
axis, say x-axis, is selected as the sweeping direction and the
sweep-lines are parallel to the another coordinate axis. It is
possibly the simplest version of this method but it can turn
out to be computationally quite involved.

The workspace is input as a set of line segments which,
when connected sequentially, forms the configuration space
of the robot. The algorithm is implemented using a point
classification procedure which accepts, as input, a specific
x-coordinate value and determines whether the line drawn
through that point and perpendicular to the x-axis contains
any extremal points. If such extremal points are found on the
slice, which is a straight line for a 2-dimensional workspace,
the procedure connects those points to the extremal points
of the previous slice (if any). On complete execution of this
procedure, the fully connected silhouette of the workspace
is obtained. Next, the two end points are connected to the
silhouette curve by considering them as critical points.

Dijkstra’s algorithm [17] is used to find the shortest path
between the two desired points. Dijkstra’s algorithm works
by visiting each of the vertices in a graph beginning with the
starting vertex. It then repeatedly examines the closest not-
yet-examined vertex, adding its vertices to the set of vertices
to be examined. It expands outwards from the starting ver-
tex until it reaches the goal vertex. The advantage of using
Dijkstra’s algorithm is that it is guaranteed to find a shortest
path from the starting vertex to the goal vertex, as long as a
path exists.

3.1 Roadmap development

In the first phase of network development, the x-axis is se-
lected as the sweeping direction and a step-size of one unit
is chosen to cut the slices. The slices are the lines parallel
to y-axis. The algorithm enumerated below is executed for
each slice.

1. Check for intersection of the slice with the workspace
boundary. Store the points of intersection.

2. Connect points of intersection of the new slice with
those of the previous slice.

3. Check for critical slices.

4. Connect all critical points to the rest of the silhouette
curves.

000

Root
Text Box
 NaCoMM-2007-099

Root
Text Box
000

13" National Conference on Mechanisms and Machines (NaCoMMO07),

IISc, Bangalore, India. December 12-13, 2007

NaCoMM-2007-099

In step 1, the procedure determines whether the line seg-
ment, just formed, intersects any of the line segments, given
in the input set, i.e., the workspace. Step 2 collects all the ex-
tremal points of the present slice and connects them properly
to the extremal points of the previous slice (if any). For this
purpose, it takes the points of intersection of the input line
segments with the slice passing through the middle of these
two slices. If any of the intersection points on the middle
slice matches with the mid-point of a probable line segment
then that probable segment is considered to be genuine, else
it is considered to be non-existent. Step 3 checks for criti-
cal slices by examining the intersection points on each slice
and detecting the points on a slice that have not been con-
nected to either its previous slice or its next slice. If such
points are found then they are considered to be critical and
the corresponding slices are considered to be critical slices.
The slices passing through the initial and final points are also
included in the crticle slices set. Step 4 connects the critical
points to the silhouette curves formed in step 2 using the cor-
responding critical slices to obtain a fully connected network
of silhouette curves of the entire workspace.

3.2 Path search

The network constructed in the previous phase is searched
for the desired path between the two configuraions given. In
this paper, the Dijkstra’s shortest path algorithm [17] is used
which is enumerated below.

1. Create adjacency matrix for the silhouette curve.

2. Label start node as permanent and all other nodes as
temporary.

3. While cost of path to goal node is not found,

e select least cost edge that connects a permanent
node to a temporary node.

e update cost of path to temporary node as the sum
of edge cost and cost of path to permanent node.

e mark selected temporary node as permanent, save
a pointer from newly created permanent node to
the previous permanent node.

4. Trace back the path from initial point to final point.

Step 1 creates an adjacency matrix for the silhouette curve
that was found during point classification. In the adjacency
matrix, nodes represent the end points of the algebraic curve
segments and the cost of the edges represents the linear dis-
tance between the end points of the segments. Step 2 begins
the Dijkstra’s algorithm by labeling the starting node as per-
manent and all the other nodes as temporary. Step 3 itera-
tively searches the graph to find the least-cost edge that con-
nects a permanent node to a temporary node. This temporary
node is then marked as permanent and the cost of the path
from the source to the present node is updated to the sum of
the cost of the path to the permanent node and the cost of
the edge between the permanent node and the present node.
The iteration terminates when the destination node becomes

permanent, i.e., the cost of the shortest path from the source
to the destination has been calculated. Step 4 traces back the
path from the destination to the source by following back the
links.

4 Results and Discussions

The algorithm, implemented in C language, is tested on a
number of imaginary workspaces having geometric bound-
aries. The results obtained for a few of the cases are pre-
sented in this section to show the promise of the imple-
mented path planning algorithm. The execution of the algo-
rithm needs to be supplied the step-size for the hyperplanes
to cut the slices in the sweeping direction, along with the
coordinates of the initial and the goal configurations.

12

Silhouette Curve
Robot Paih —+—

10 /
/’/

sh goal pgsition

6l [

nitial pogitio ———|

0 2 4 6 8 10 12

Figure 1: Path between (1.5,5) and (6,8)

Silhouette Cuve ——
Robot Path —x—

6 initial position

<
N

0

L L L L L
0 2 4 6 8 10 12

Figure 2: Path between (4.5,6) and (9,3)

Fig. 1 shows the path planned by the developed algorithm
for the two given terminal locations. Initial point (1.5,5)
is to connect the goal point (6,8). The path, consisting of
semi-free straight lines, is highlighted with bold lines. The
crossmarks over it show the points of stepwise-connection of
the silhouette while its making. The path consists of the parts
of the two critical slices passing through the start point and
the end point and a portion of the silhouette of the workcell
cut by these two slices.

Another case with end-points (4.5,6) and (9, 3) in a differ-
ent workspace is fed to the algorithm and the resulting path
is shown in fig. 2. The path passes conveniently through
the passage between the two obstacles. As the algorithm

000

Root
Text Box
 NaCoMM-2007-099

Root
Text Box
000

13" National Conference on Mechanisms and Machines (NaCoMMO07),

IISc, Bangalore, India. December 12-13, 2007

NaCoMM-2007-099

provides the paths which touch the workspace boundaries, a
small offset (tolerance) can be added to the boundaries, as
protection walls, before supplying the workspace to the al-
gorithm.

Silhouette Cuve ——
Robot Path —x—

6 goal pgsition

|
2+ K

L L L L L
0 2 4 6 8 10 12

Figure 3: Path between (2.5,3) and (9,6)

Initial and final positions in the next case are (2.5,3) and
(9,6), for another environment with two obstacles. The
planned path uses the portions of the two slices passing
through the start and goal positions and parts of both the
workcell and the obstacle boundaries, as shown in fig. 3. It
can be seen that, provided the silhouette formed during the
first phase of network development is correctly connected, a
feasible path is assured, as long as it exists.

12

Silhouette Curve ——
Fobot Paih —+—

]

9ol positign

1

—

0 2 4 6 8 10 12

Figure 4: Path between (1.5,7) and (6.2,5)

Silh

T
ouette Curve ——
Robot Path —+—

6 initial position

Figure 5: Path between (4,6) and (8,2)

Figs. 4 and 5 are the examples of the cases when the ini-
tial and/or the final point is very near to the boundaries of

the workcell or obstacles. The path formed reaches the de-
sired locations easily and, unlike potential field methods, is
free from the problem of defining the potential functions to
avoid the trapping in local minima. We understand that the
path found in the network, using Dijkstra’s algorithm, is one
of the feasible paths possible between the two desired loca-
tions.

Silhouette Cuve ——
Robot Path ——

L
0 2 4 6 8 10 12

Figure 6: Path between (2.5,4) and (6.5,6)

Silhouette Curve ——
Fobot Paih —+—

Figure 7: Path between (2.5,5.5) and (6.2,2)

Figs. 6 and 7 show paths for some new sets of end-points
in the above environments. All these results highlight the
successful implementation of the algorithm and shows the
efficiency of the Silhouette method.

It is noticed that the silhouette curves formed in all the
cases above have polygonal geometry but if the boundary of
the workcell or obstacle is actually curved then that can be
better represented by taking a smaller step size. Another im-
portant observation is that, if any boundary segment of the
workcell or an obstacle coincides with the sweeping hyper-
plane, as occured in some of the presented cases, it leads
to degeneracy and needs special attention while tracing the
silhouette curves.

5 Conclusion

This paper proposes a possible implementation of the sil-
houette method for robot motion planning in 2-dimensional
workspaces. The main reason for particularly focussing on
this method is that it is complete and it works for any n-
dimensional C-space, even though the path found by this

000

Root
Text Box
 NaCoMM-2007-099

Root
Text Box
000

13" National Conference on Mechanisms and Machines (NaCoMMO07),

IISc, Bangalore, India. December 12-13, 2007

NaCoMM-2007-099

method is only a feasible one. But in higher dimensions,
due to high computational complexity, quite often it is im-
portant to trace a possible path than to find the most optimal
path. This algorithm recursively reduces the problem of con-
structing a roadmap in n-dimensions to several sub-problems
of constructing roadmaps in sets of dimension n — 1.

It is clear, however, that apart from its theoretical utility
there is no practical utility of silhouette method implemented
in 2-dimensions. But it does pave the way for future imple-
mentation of the method in higher dimensions that can then
be used for actual path planning of a robot in configuration
spaces of higher dimensions.

References

[1] J. C. Latombe, “Robot Motion Planning”, Boston,
MA: Kluwer Academic Publishers, 1991.

[2] L. E. Kavraki, P. Svestka , J. C. Latombe and M. H.
Overmars, “Probabilistic Roadmaps for Path Planning
in High-Dimensional Configuration Spaces”, [EEE
Trans. on Robotics and Automation, Vol. 12, No. 4,
August 1996, pp. 166-171.

[3] P.Isto and M. Saha, “A Slicing Connection Strategy for
Constructing PRMs in High-Dimensional Cspaces”,
Proc. IEEE International Conference on Robotics and
Automation, Ornaldo, Florida, May 2006, pp. 1249-
1254.

[4] R.Katz and S. Hutchinson, “Efficiently Biasing PRMs
with Passage Potentials”, IEEE International Confer-
ence on Robotics and Automation, Ornaldo, Florida,
May 2006, pp. 889-894.

[5] L. E. Kavraki, M. N. Kolountzakis and J. C. Latombe,
“Analysis of Probabilistic Roadmaps for Path Plan-
ning”, IEEE Trans. on Robotics and Automation, Vol.
14, No. 1, February 1998, pp. 566-581.

[6] F. Avnaim,J. D. Boissonnat and B. Faverjon, “A Prac-
tical Exact Motion Planning Algorithm for Polygonal
Objects amidst Polygonal Obstacles 7, Technical Re-
port No. 890, INRIA, Sophia-Antipolis, France, 1988,
pp- 1656-1661.

[7] D.Zhu andJ. C. Latombe, “New Heuristic Algorithms
for Efficient Hierarchical Path Planning”, IEEE Trans.

on Robotics and Automation, Vol. 7, No. 1, Febuary
1991, pp. 9-12.

[8] T. Cecil and D. E. Marthaler, “A Variational Approach
to Path Planning in Three Dimension using Level Set
Methods”, Journal of Computational Physics, Vol.
211, 2006, pp 179-197.

[9] E. S. Conkur, “Path Planning using Potential Fields for
Highly Redundant Manipulators”, Robotics and Au-
tomation Systems, Vol. 52, 2005, pp 209-228.

[10] J. Wang, X. B. Wu and Z. L. Xu, “Decentralized For-
mation Control and Obstacles Avoidance Based on Po-
tential Field Method”, Proc. of fifth International Con-
ference on Machine Learning and Cybernetics, Vol. 2,

Dalian, August 2006, pp 803-808.

[11] J.C. Latombe, “Motion Planning: A Journay of
Robots, Molecules, Digital Actors and Other Arti-
facts”, IEEE Trans. on Robotics and Automation, Vol.
18, No. 11, 1999, pp. 1119-1128.

[12] G. Sanchez and J. Latombe, “A Single-query Bi-
directional Probabilistic Roadmap Planner with Lazy
Collision Checking”, International Symposium on
Robotics Research, Springer, 2001, pp. 403-417.

[13] M. Ceccarelli, F. Valero, V. Mata, 1. Cuadrado, “Gen-
eration of Adjacent Configurations for a Collision-free
Path Planning of Manipulators”, Robotica (Cambridge
print), Vol. 14, 1996, pp. 391-396.

[14] F. Valero, V. Mata, 1. Cuadrado and M. Ceccarelli,
“A formulation for Path Planning of Manipulators in
Complex Environments by Using Adjacent Configura-
tions”, Advanced Robotics, Vol. 11, No. 1, 1997, pp.
33-56.

[15] O. Brock and L. E. Kavraki, “Decomposition-based
Motion Planning: A Framework for Real-time Mo-
tion Planning in High-Dimension”, IEEE Trans. on
Robotics and Automation, Vol. 2, 2001, pp. 1469-1474.

[16] C. F. Canny, “The Complexity of Robot Motion Plan-
ning,” MIT Press, Cambridge, MA, 1988.

[17] E. W. Dijkstra, “A Note on Two Problems in Connex-
ions with Graphs”, Numerische Mathematik 1, 1959,
pp- 269-271.

000

Root
Text Box
 NaCoMM-2007-099

Root
Text Box
000

