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Abstract 

 In this paper we present a new approach for joint 
trajectory tracking of a single-link flexible robot 
manipulator. Firstly a distributed parameter dynamic 
model is derived using extended Hamilton Principle. 
Based on this model a new moment feedback trajectory 
tracking control scheme is designed for a single-link 
flexible robot manipulator having a payload at its free end. 
The control scheme is proved to be stable using Lyapunov 
approach and the tracking error and vibrations of link are 
bounded. The effectiveness of the control scheme is 
demonstrated using simulation studies. 
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1   Introduction 
 
Modeling and vibration control of robots with flexible 
links have found great motivation due to many advantages 
over the rigid-link ones such as lower arm cost, better 
energy efficiencies, higher operation speed and improved 
mobility. Moreover use of light weight robots where link 
flexibility is an inherent property, is preferred in many 
applications as use of bulky rigid robots is not suitable for 
those applications e.g. space applications. 

In recent years, extensive research has been carried 
out for the control of flexible-link robots. As the dynamic 
behavior of a flexible-link is described by a partial 
differential equation, the system is a distributed parameter 
system and possesses infinite number of dimensions, 
which makes it difficult to control [1]. As a consequence, 
the control of flexible robots has been considered as one of 
the most challenging problems in the control community. 

In order to derive tractable solutions to the original 
problem approximate finite dimensional models are widely 
used in research community. Two most commonly used 
approaches namely assumed modes method and finite 
elements method have been very popular in the control 
community. Cannon and Schmitz [2] used assumed modes 
method in order to solve problems related to single flexible 
link manipulators, considering that the sensors are not 
collocated with actuators. Book [3] used Lagrangian 
formulation to model flexible link manipulators where the 

link deflection is assumed to be small so that the link 
transformation is represented in terms of additional modal 
shapes. Other applications of modal approximations are 
found in [4, 5]. Serna and Bayo [6] presented an efficient 
method for describing the dynamics of flexible robots 
based on Lagrangian formulation and finite element 
method. Pereira and Proenca [7] analyzed the flexible 
structure using a finite element model strongly reduced by 
applying the component mode synthesis technique. Usoro 
et.al. [8] also used finite element approach to approximate 
the original system.  

However these approaches have attracted much 
attention, many problems arise due to approximation factor 
e.g. excitation of high frequency dynamics, requirement of 
relatively higher order controller to achieve high accuracy 
of performance etc. An alternative approach to derive 
controllers directly from PDE or controllers based on 
distributed parameter dynamic models, has also been 
popular in the design of control schemes. Morguel [9] 
proposed a regulating control of Euler–Bernoulli beam 
using a boundary force and moment at the free end in 
addition to joint torque. Luo [10] proposed an 
asymptotically stable strain feedback control for a 
regulating control of link vibration. Ge et al. [11] designed 
a strain feedback regulating control, where the payload 
mass was considered. De Queiroz et al. [12] proposed an 
adaptive set point control scheme using joint torque and a 
boundary force at the free end.  

For the approximation approaches, various fully 
developed control theories are available. However, due to 
the complexities of the distributed-parameter dynamic 
model, most of the research efforts have addressed the 
regulation of control systems around a goal position. The 
resulting regulating control schemes may not be used 
independently in trajectory control. In this paper we 
present a new control design scheme for joint trajectory 
tracking of a single link flexible robot having a payload at 
its free end. The proposed control is stable for trajectory 
tracking which is proved using Lyapunov approach. 
Shifman [17] derived a controller for Euler Bernoulli beam 
using the complete distributed model along with a 
Lyapunon function approach while the model structure 
was preserved in the control law. Ge et al [18] presented 
an asymptotically stable end point regulation of a flexible 
scara/Cartesian robot and they proved the closed loop 
stability for the original distributed parameter system using 
Lyapunov function approach  
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The paper is organized as follows. In section 2 the 
dynamic model of the system is derived using extended 
Hamilton principle. The proposed controller is presented in 
section 3. Section 4 deals simulation studies. Concluding 
remarks are given in section 5. 
 
2   Dynamic Modeling  
 
We consider a one-link flexible robot manipulator which is 
rotated by a motor in a horizontal plane. The flexible-link 
of length L, having uniform mass density ρ  per unit 
length, uniform flexible rigidity ,EI is clamped on the 
vertical shaft of the motor at the one end and has a 
concentrated mass ,pM  at the other end. Let ,hI be the 
moment of inertia of the rotor of the motor. Let ( ),tθ  be 
the angle of rotation of the motor. Let ( ),tτ  be the torque 
developed by the motor. In Fig.(1) a pair ( , )i j   of 
orthogonal unit vectors, which are fixed at the vertical 
shaft of the rotor of the motor is shown. Let ( , ),w x t denote 
the transverse displacement at time ,t  and at a spatial 
point ,x  and ( , ),w L t denote the transverse displacement at 
the end point. Due to the planar motion and the slender 
link we assume the Euler-Bernoulli model, for which the 
rotary-inertia and shear deformation effects can be 
ignored.  
 

 
 Figure 1: A flexible-link robot manipulator. 
 

Let P  be the position vector of the arm and r be the 
position vector of the flexible arm at a general position. 
The position vectors P, r and their time derivatives are 
given by  

( , )

( ( ) ( , )) ( , ) ( )
( , )

( ( ) ( , )) ( , ) ( )

P Li w L t j

P L t w L t j w L t t i
r xi w x t j

r r t w x t j w x t t i

θ θ

θ θ

= +

= + +
= +

= + +

 

Where a dot denotes the time derivative. 
Now, the total kinetic energy T and the potential 

energy V  of the link is given as 

2

0

1 1 1
2 2 2

L
T T

h pT I M P P r r dxθ ρ= + + ∫                      (1) 

[ ]2

0

1 ( , )
2

L

V EI w x t dx′′= ∫       (2) 

The virtual work Wδ is given by  
Wδ τδθ=                                                          (3) 

  

The law governing the motion of mechanical system 
is the extended Hamilton’s principle which can be written 
as follows 

1

2

( ) 0
t

t

T V W dtδ δ δ− + =∫    (4) 

Substituting Eq.s (1) to (3) in Eq. (4) and neglecting 
nonlinear terms 2 2 2 2( , ) ( ), ( , ) ( )w x t t w L t tθ θ  and then after 
simplification we get the following PDE’s of the system 
dynamics as follows  

3

0

1( ) ( , ) ( ( , ))
3

L

h pI L x w x t dx M L L w L tρ θ ρ θ τ+ + + + =∫  

                                                                                       (5) 
[ ( , )] ( , )x w x t EI w x tρ θ ′′′′+ = −   (6) 

The base bending moment of the flexible link can be 
calculated by 

.  
3

0

1(0, ) ( , )
3

( , )

L

p

EI w t L x w x t dx

M L L w L t

ρ θ ρ

θ

′′ = − − −

⎡ ⎤− +⎣ ⎦

∫  

Thus the Eq. (5) can be reduced to 

(0, )hI EI w tθ τ ′′= +    (7) 

The corresponding boundary conditions are given by 
the following set of equations: 

(0, ) 0w t =     (8) 
(0, ) 0w t′ =     (9) 

( , ) 0w L t′′ =     (10) 

( , ) [ ( ) ( , )]pEI w L t M L t w L tθ′′′ = +   (11) 

 
3   Controller Design 
 
In this section, based on the distributed dynamic model 
and boundary conditions, a new trajectory control law will 
be designed. The Lyapunov stability theorem will be used 
as a mathematical tool. 

Let the joint tracking error be defined as 
drθ θ θ= −     (12) 

Where dθ  is a time varying desired trajectory of joint 
angleθ . 

To design a trajectory tracking controller we shall 
make an assumption. 
 
3.1   Assumption 
 
The desired joint trajectory dθ and its first and second time 

derivatives, dθ  and dθ , are assumed to be uniformly 

bounded. In addition, 0dθ = and 0dθ = are assumed for all 
time mt t≥  with some finite time 0mt ≥ . 

Now consider a flexible-link robot whose dynamics is 
described by Eq.s (6) to (11). Suppose that the control 
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objective is to have the flexible-link robot track a desired 
trajectory satisfying the above stated assumption as 
accurately as possible while promptly suppressing the 
resulting link vibration asymptotically to zero. Then the 
following control law can achieve the objective while 
keeping all internal signals bounded. 

 
  1 0 2 0h d D P dI K r K r K EIw r K EIwθ θ θτ θ θ′′ ′′= + + + +   (13) 

 
Where 1, ,D PK K K and 2K  are positive control gains; . is 
the absolute value of the corresponding variable. 
Consider the Lyapunov function candidate ( ) :LV t  

2 22

0 0

2 2 2

(1 )
( ) ( )

2

1( ( , ) ) ( )
2

L L

L

P h P

K
V t EIw dx w x dx

M w L t L I r K rθ θ

ρ θ

θ

⎡+ ′′= + + +⎢
⎣

⎤+ + + +⎦

∫ ∫
 (14) 

The time derivative of )(tVL  is given as 

2
0 0

( ) (1 ) ( ) ( )

( ( , ) ) ( ( , ) ) ( )

L L

L

P h P

V t K EI w w dx w x w x dx

M w L t L w L t L r I r K rθ θ θ

ρ θ θ

θ θ

⎡
′′ ′′= + + + +⎢

⎣
⎤+ + + + +⎦

∫ ∫
 

                                                                                     (15) 
Now, ( )w xθ+ is computed from Eq. (6) and is 

substituted into second integral. Then subsequent 
integrations by parts along with the boundary conditions 
Eq. (8) to (11) we get , 
 

2( ) (1 ) (0, ) ( )L h PV t K EIw t r I r K rθ θ θθ′′= − + + +  (16) 
 

Substituting the joint dynamics (7) with the control 
law (13) into rθ  yields  

( )

( )

2
2 1

2
2 1

2 2 2
1

1

( ) (1 ) (0, ) (0, )

( ) (1 ) (0, ) (0, )

(1 )
(0, )

L d D d d

L d D d d

D d

V t K EIw t K K EIw t

V t K EIw t K K EIw t

K
K r K EIw t r

Kθ θ

θ θ θ

θ θ θ

θ

′′ ′′= − + − +

′′ ′′≤ + − +

⎛ ⎞+′′= − − −⎜ ⎟
⎝ ⎠

         (17) 
 

Then ( ) 0LV t ≤  is guaranteed for all rθ  satisfying 

2 2

1

(1 ) ,Kr
Kθ
+

≥ which implies the boundedness of ( )LV t  

and hence the boundedness of all internal 
signals ( , , , ).r r w w Lθ θ ∞′′∈ This also implies the 
boundedness of the control input τ defined in Eq. (13) 
since dθ  and dθ  are uniformly bounded. Then the joint 
dynamics (7) gives ∞∈ Lθ . 

Since 0dθ = for all mt t≥ with some finite time 
0,mt ≥  

2( )L DV t K rθ≤ −  

is guaranteed for all mt t≥ . Then integration of the ( )LV t  

yields 2

0

rθ
∞

< ∞∫  so that 2Lr ∈θ . In addition, Lθ ∞∈ is 

guaranteed as shown above. Then, as a consequence of 
Barbalat’s lemma [14], 0rθ → asymptotically as 

,t →∞ which also implies 0rθ →  asymptotically as 
,t →∞  since r Lθ ∞∈ . 

Since 0rθ → and 0rθ →  as asymptotically as ,t →∞ , 
the joint dynamics (7) and the control law (13) result in 

2(1 ) (0, ) 0PK r K EIw tθ ′′+ + →  asymptotically as. ,t →∞  
Since r Lθ ∞∈ and 0rθ → asymptotically as ,t →∞ θ  and 
hence rθ  approach some finite constants, which implies 

(0, )EI w t′′ also approach some finite constant. Since there 
is no applied force or moment on the link or payload other 
than the joint torque, (0, )EI w t′′ (the moment of the link 
at 0x = ) should approach zero in the steady state 
( 0),θ → which implies 0rθ → asymptotically as t →∞ . 
Finally, (0, ) 0EI w t′′ = in the steady state implies zero 
deflection of the link. Therefore, it can be concluded that 

( , ) 0w x t →   asymptotically as t →∞ . 

 
4   Simulation Studies 
 
In this section the numerical study of the proposed scheme 
is presented. The Table 1 describes the parametric values 
of flexible manipulator. 
 
Table 1: Parameters of the Flexible Manipulator 
 

 
The desired trajectory is chosen as 
 

5 4 3

6 15 10
2d

m m m

t t t
t t t

πθ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥= − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
Where 10secmt = . The initial values for joint angle 

are (0) , ( ) 0
10

tπθ θ= = . The gain coefficients in the 

proposed control law are taken 
as 1 210, 2, 1, 1d pK K K K= = = = . The whole system is 
simulated for 15 sec. The numerical solution of the 
differential equations of the system is carried out using 
neural network approach [15].  Using this approach the 

Mass per unit length     0.45 kg 
Link length      0.5 m 
Payload mass      0.2 kg 
Moment of inertia of rotor of motor    0.048 kg m2 
Flexural rigidity  ( )EI      1.99 Nm2 

Parameters   Values
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joint angle and link deflection are assumed in the form of a 
feedforward neural network [16] as follows 

2( ) ( , )
10

t t N a tθ
πθ = +  

2 3 2 3 *( , ) ( ) ( , ) (3 ) ( , )w x t x L x N b t Lx x N c t= − + −  
Where *( , ), ( , ), ( , )N a t N b t N c tθ  represents   feed forward 
neural networks and , ,a b c represent their weights 
respectively. The whole interval is divided into 15 
subintervals for solving the equations. 
The following figures depict the performance of the 
designed controller and response of the system. 
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Figure 2:  Error in trajectory tracking 
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Figure 3: Deflection at free end 
 

5   Conclusion 
 
In this paper a new feedback joint trajectory control law 
has been presented based on distributed parameter 
dynamic model of a single flexible link robot manipulator. 
The proposed control scheme is stable throughout the 
entire trajectory tracking. In this scheme the drawbacks of 
truncated models are avoided and satisfactory results are 
achieved. The proposed control is considered in light of 
negligence of rotary inertia effects and axial forces. The 
present study will be extended to cases considering the 

above effects. As well as gravity effects and two link 
flexible robot manipulators will be considered for 
trajectory tracking problems. 
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