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Abstract 

In this paper, we present a systematically obtained novel 
design of a compliant X-Y micro-stage with a large range 
of motion. Topology optimization is used to design a com-
pliant mechanism for desired workspace by maximizing 
the displacement amplification along the X and Y axes. 
Geometrically nonlinear finite element analysis is used to 
model the behavior of the compliant mechanism using a 
ground structure of frame elements. The optimum design 
is found to cover a range of 6.57 % of the entire manipula-
tor size. The stage is fabricated using wire-cut electro dis-
charge machining (EDM) of spring steel 
(ENJ42/AISI1080) and it is actuated using shape memory 
alloy (SMA) wires.  

Keywords: Micro Stage, Compliant mechanisms, Large 
Range, Wire-cut EDM, and SMA 

1 Introduction 

Most of the commercially available X-Y stages of large 
size are equipped with two mutually perpendicular, inde-
pendent, and rigid-body linear actuators running in guide-
ways. However, the presence of backlash, friction and 
wear in physical joints in these stages makes it inefficient 
and at times impossible to use the similar principles in 
micro and nano stages where high precision is desired. 
Compliant mechanisms (CMs), on the other hand, are 
backlash-free and joint-less. These and other advantages of 
compliant mechanisms over rigid body mechanisms make 
it appropriate to use CMs in high-precision instruments. 
Furthermore, the elastic nature of CM aids us in employing 
a very compact and often open-loop control for the stage.  
 Some efforts have been made in designing and analyz-
ing CMs for high-resolution motions at the micro and nano 
sizes [1-3]. These efforts were focused on the design of 
CMs with flexural hinges. Flexural hinges are usually nar-
row (hourglass like) portions that imitate the kinematic 
revolute joints. The range of motion of such CMs is lim-
ited as the flexural hinges experience large stresses under 
large displacements. Some other designs of micro and 
nano positioning devices include the clever usage of 
thermo-mechanical actuators in order to achieve six de-
grees-of-freedom positioners [4], and positioning using 
impact forces [5]. Although high accuracy is achieved in 
positioning the above stages, many of them have limited 

range of operation either due to the usage of flexural hing-
es or due to the usage of actuators with low working range 
[6]. Some of them have serial arrangement in that one axis 
is stacked on top of another while others have parallel 
arrangement. It appears that all the aforementioned stages 
were conceived intuitively or were based on the experience 
of the designers. In this paper, we pose a structural 
topology optimization problem to get a parallel ar-
rangement that has a large working range without purely 
relying upon intuition or experience. This enables us to 
design a stage by optimizing a quantifiable performance 
measures rather than based on only qualitative criteria. 
With respect to the literature on compliant mechanism 
synthesis, this paper treats a new problem of designing a 
CM for prescribed workspace.  
 Maximizing the workspace of a compliant mechanism 
implies that a chosen point (in this case, the motion stage) 
can move across a large area when two inputs are applied 
to the XY stage. An additional important requirement is to 
de-couple the motion of the stage due to the inputs applied 
in two orthogonal directions. Towards this, two objective 
functions suiting the above requirements are identified and 
a multi-objective optimization problem is posed (Section 
2). Next, a common method of solving a multi-objective 
optimization problem is discussed briefly. Geometrically 
nonlinear analysis is briefly touched upon and a method of 
computing analytical sensitivities (which are required for 
the continuous optimization algorithm) is explained (Sec-
tion 3). Finally, the results of the optimization procedure, a 
detailed discussion of the new compliant XY stage, and the 
actuation of the wire-EDM manufactured spring-steel pro-
totype using SMA wires are discussed (Section 4 & 5). 

2 Problem Statement 

2.1 Specification 
Consider a ground structure of frame elements with equal 
length in both X and Y directions as shown in Fig. (1-2). 
Three corner nodes, namely A, B and C are fixed to the 
ground and the forces are applied at points D and E as 
shown in the figures. The points D and E are allowed to 
move only in the X and Y directions respectively because 
the remaining degrees of freedom of these points are con-
strained by a folded beam suspension (FBS) attached at 
these points.  This is done to enable independent move-
ment of actuation point and is usually termed as actuator 
isolation [1]. The in-plane widths of all the members, ex-
cept those of the FBS are the design variables for the op-
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timization problem. All the beams are assumed to be made 
of spring steel (ENJ42/AISI1080) and the out-of-plane 
thickness of all members are same. A stage–elliptical disc–
is connected to the remaining corner, F, of the square do-
main. 

2.2 Optimization Problem 
The workspace of the X-Y stage can be enhanced if the 
stage undergoes a large motion when forces are applied at 
D and E. However, the presence of FBS limits the motion 
of the input. Therefore, the range of the motion can be 
enhanced only by achieving displacement amplification 
from the input point to the CM and the output point. Fur-
thermore, independent motions of the stage in both the X 
and Y directions for the forces applied at D and E is also 
desired. This simplifies the control system significantly. 
This is usually termed as stage isolation [1]. Therefore, the 
design problem can be posed as a multi-objective optimi-
zation given by 
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where is a vector containing the widths of all the frame 
members and n is the total number of frame members con-
stituting the ground structure. Suffix “1” stands for the first 
load case where the mechanism is loaded along the X di-
rection at the point D (see Fig. (1)) and “2” stands for the 
second load case in which case the force is only acting at 
the point E in the Y direction (see Fig. (2)). Here, we 
have

 w

11 12 21 22 and  f f f= f=  as a diagonal symmetry is 
considered for the design variable. Therefore, the problem 
can be modifies as 
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 Objective function 1f  takes care of the amplification 
in both X and Y directions whereas the objective function 

  takes care of decoupling the motion. All the n design 
variables are bounded between w and  to avoid 
the ill-conditioning of the stiffness matrix involved in the 
finite element analysis (FEA), which is required at every 
iteration of the optimization process. The quantities used 
in the expressions of functions  and  are defined in 
Figs. (1-2).  
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3  Solution Procedure 

3.1 Multi-objective optimization 
The most common, convenient, and simplest way of han-
dling multi-objective optimization problems is the 
weighted sum method [7].  In the case of bi-objective prob-
lems, this assumes the form: 

( ) ( ) ( )1 2   1       0 1Minimize F f fλ λ λ= + − ≤ ≤w w
w

      (2)          

The weighting parameter λ  is varied parametrically from 
0 to 1 and the corresponding minimal points { }1 2f , f can 
be plotted to obtain the Pareto curve using which a desired 
Pareto minimal point can be chosen. Hence, we solve the 
optimization problem posed in Section 2.2 for several val-
ues of λ . 

1,inu
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Figure 1: The ground structure of frame members. Force is 
applied at D in X direction to obtain a displacement of the 
stage in X direction. 

 
Figure 2: The ground structure of frame members. Force is 
applied at E in Y direction to obtain a displacement of the 
stage in Y direction. 
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3.2 Geometrically nonlinear FEA 
Compliant mechanisms usually undergo large displace-
ments and rotations but small strain [8]. This is commonly 
termed as geometrical nonlinearity where the FEA requires 
satisfying the equilibrium equation in the deformed con-
figuration [9, 10]. In geometrically nonlinear FEA, the 
loads are applied in steps and a residual vector, , is com-
puted in each step. 

g

( ) ( )internal ext=0 0g x + u f x + u f−

)u

                             (3) 

where  is the internal force vector, ex-
pressed in a global reference frame, depends on the initial 
configuration, ; and the net displacements ; and  
is the applied external force vector. 

(internal 0f x +

0x u extf

( )internal 0f x + u

)

 is 
computed using the equation:  

( ) ( )internal ext extt+ +∆0 0f x + u K x + u   u = f f∆                 (4) 
where  is the differential displacement vector;  ∆u

(t 0K x + u   is tangent stiffness matrix; and these are 
computed using the equations  
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3.3 Sensitivity Analysis 
Most of the efficient optimization algorithms require the 
gradient of the objective function and the constraints with 
respect to the design variables to expedite the optimization 
process. In the case considered, since the objective func-
tion, F, is not an explicit function of the design vari-
ables, , its derivative should be computed as  w
dF F d
d d

∂
=
∂

u
w u w

                                                                   (7) 

In geometrically nonlinear case, the second term on the 
right hand side in Eq. (7) can be computed as 
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where n is the total number of load steps. Therefore, we 
have:  
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The first and second terms comprising the derivative can 
be computed from the following equations. 
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3.4 Optimization Algorithm  
The use of geometrically nonlinear FEA and large number 
of chosen elements and nodes make the problem computa-
tionally very expensive. Since sequential quadratic pro-
gramming algorithm requires multiple function evaluations 
in each iteration, and since the method of moving asymp-
totes (MMA) [11] resolves this issue to some extent by 
using the dual method, the latter is implemented to carry 
out the optimization.   

4  Results and Discussions 

The value of λ  is varied uniformly from 0 to 1 in a step of 
0.0556 to obtain a series of minimal values for the objec-
tive functions are plotted in Fig. (3). Corresponding data is 
given in Table 1. 

Figure 3: Pareto front generation. The value of λ is varied 
equally from 0 to 1 and corresponding minimal values of 
both objective function are plotted on X and Y axis respec-
tively. 

 The obtained mechanism is analyzed using COMSOL 
multi-physics software, and the results are shown in Figs. 
(5-7). Three load cases are identified, namely load along 
the X axis only, load along the Y axis only, and load along 
both the X and Y axes simultaneously. In all the three 
cases, two parameters, namely stage amplification (SA) 
and stage isolation (SI) are identified and the results are 
tabulated in Table 2. 

  = 
 

Desired DisplacementSA
Input displacement

                                 (14) 

  = 
 

Undesired DisplacementSI
Desired Displacement

                              (15) 

 Ideally, one would like to achieve amplification as 
high as possible and isolation as low as possible. Here it is 
found that the amplification achieved is more than 1 when 
individual loads are applied and it is less than 1 when the 
loads are acted together. It may be attributed to the addi-
tional stiffness that is offered by the compliant mechanism 
when the loads are acting together. 

Pareto curve (10th degree 
polynomial fitted) 

Pareto minimal point chosen
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The optimized topology corresponding to the chosen 
Pareto minimal point is shown in Fig. (4), and in Table 1 
in italics and red colour. 

Table 1: Data for Pareto front generation. The red colored 
one shows the chosen Pareto minimal point.   

S .No λ  1f  2f  
1 0 -0.0294 0.0001 
2 0.0556 -0.8146 0.0027 
3 0.1111 -1.1024 0.0001 
4 0.1667 -1.3686 0.0078 
5 0.2222 -1.5607 0.0015 
6 0.2778 -1.6979 0.0018 
7 0.3333 -1.9808 0.0048 
8 0.3889 -2.1766 0.0051 
9 0.4444 -2.2144 0.0039 

10 0.5000 -2.2095 0.0090 
11 0.5556 -2.3986 0.0040 
12 0.6111 -2.5136 0.0684 
13 0.6667 -2.6640 0.3141 
14 0.7222 -3.0405 0.5952 
15 0.7778 -3.0555 0.7128 
16 0.8333 -3.3682 2.1748 
17 0.8889 -3.2768 1.9555 
18 0.9444 -3.1869 1.8653 
19 1.0000 -3.2775 1.9883 

 
             

 

Figure 4: Optimized topology for 0.5λ = (Pareto minimal 
chosen). Fixed points and the point of application of loads 
are same as given in Fig. (1) and Fig. (2).  

Table 2: A summary of the amplification and isolation 
achieved. The data corresponds to the behavior of the stage 
in the first quadrant.  

Load 
Case xF  

 

yF  

 

stageu
 

 

stagev
 

 

inputu
 

 

inputv
 

SA SI 

1 16 00 2.56 3.41 0.28 - 1.3 0.11 
2 00 16 3.41 0.28 - 0.28 1.3 0.11 
3 16 16 2.58 2.58 3.07 3.07 0.84 - 

 

4.1 Discussion 
4.1.1 Actuation 
For making use of the stage as a micro-manipulator a con-
trol system is often required. Since the motion of a CM is 
accurately predictable, one can even incorporate an open-
loop control system provided that the actuators are highly 
reliable and precise. However, most of the high-resolution 
actuators such as piezoelectric, electro magnetic and hy-
draulic actuators are either of low range or are very heavy. 
A large range of motion can be achieved by using a SMA 
wire actuator. However, highly nonlinear relationship be-
tween the current passing through SMA and its displace-
ment makes it inefficient and inaccurate to achieve high 
precision without a closed-loop control system. Precise 
control of temperature to effect controlled input is also not 
easy with SMA actuators. But, we use SMA actuation in 
this work as a first trial for demonstration. 

 
Figure 5: Results of finite element analysis done using 
COMSOL. Load is applied only along Y axis. Input points 
and fixed points are same as that of given in Fig. (1) and 
Fig. (2). 3.41     2.56    0.28stage input stagev mm v mm u mm= = =  

4.1.2 Computation of forces and displacements.  
For positioning the stage at a certain location in the work-
space, the displacement of the center of the stage from the 
neutral position is required. Once the absolute displace-
ments from the initial configuration are obtained, the 
forces required at both the inputs can be interpolated using 
the simulation results, shown in Fig. (8) and Fig. (9). 
4.1.3 Comparative study  
In order to understand the effectiveness of the mechanism 
obtained, its certain parameters are compared with one of 
the X-Y stages (Fig. (10)) available in the literature [1].  A 
normalized parameter, called specific range (SR) [1] is 
used to compare the effectiveness of various precision 
instruments. It is defined as the ratio of the range of mo-
tion along one axis (either X or Y) to the characteristic 
length of the stage. Here, since the area covered is not per-
fectly a square, we modify it as shown in Eq. (16). 
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Figure 6: Results of finite element analysis done using 
COMSOL. Load is applied only along X axis. Input points 
and fixed points are same as that of given in Fig. (1) and 
Fig. (2).  3.41     2.56    0.28stage input stageu mm u mm v= = = mm

m

 
Figure 7: Results of FEA done using COMSOL. Load is 
applied along both X and Y axis. Input points and fixed 
points are same as that of given in Fig. (1) and Fig. (2) 

 3.07   2.58  input input stage stageu v mm u v m= = = =

Area coveredSR = 
Charecteristic length

                  (16) 

Other important parameters, namely amplification 
and stage isolation are compared in Figs. (12-13). Dis-
placement undergone by the chosen stage for various 
forces at inputs is also simulated in Fig. (11). The area 
covered by the stage imitates a square albeit not perfectly. 
This is much worse with the compliant stage obtained (Fig. 
(9)) in II, III, & IV quadrants. A large amplification and a 
highly non-linear behavior are obtained in the third quad-
rant. This is because we have not taken care of this in the 

objective function. But this amplification helps to improve 
the specific range of the obtained X-Y stage in the I quad-
rant.  

 
Figure 8: The displacement undergone by the stage for 
various loads applied at inputs. The loads are applied in 
steps. Area covered = . Characteristic length of the 
mechanism= . Left curve and the bottom most 
curves represents loads of F N  and 

297 mm
150 mm

10 : 2 :16 y = −

N10 : 2 :16 xF = −  respectively. 

 
Figure 9: First quadrant of Fig. (8) is shown. Both 

 x yF and F are varied from 0 to 16 N in steps of 2 N. 

5  Micro-stage Prototype 

Spring steel (ENJ42/AISI1080) was chosen as the material 
for prototyping because of its elastic nature under large-
displacement situations. It is also inexpensive. A plastic 
material such as polypropylene would have been fine but 
realizing as small a feature as125 mµ , minimum feature 
size of the mechanism, is not easy unless sophisticated 
micromachining techniques are used. We used wire-cut 
Electro Discharge Machining (EDM) to machine the pro-
totype out of spring steel foil. The prototype is shown in 
Fig. (14). 
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Figure 10: X-Y stage taken for comparison, adapted from 
Ref [1]. Characteristic length of the mechanism is150 .  mm

 
Figure 11: The displacement undergone by the chosen X-Y 
stage for various loads applied at inputs. The loads are 
applied in steps. Vertical curves and the horizontal curves 
represents 16 : 2 :16  yF N= − and 16 : 2 :16 xF N= −   
respectively 

 
Figure 12: Input displacement vs. output displacement for 
single axis loading. This gives a measure of amplification 
achieved.  

 

xF

Figure 13: Undesired displacement vs. desired displace-
ment for single axis loading. This gives a measure of stage 
isolation. 
Table 3: Comparison of X-Y stage from literature and the 
X-Y stage obtained.  
 

Mechanisms Parameter for 
comparison Mechanism 

Compared 
Obtained Mecha-

nism 
Specific Range 2.00 % 6.57 % 
Stage Isolation 0.10 0.11 

Linearity Nonlinear  Nonlinear 
Amplification 
(for single axis 

movement) 
1.00 1.30 

       

            
Figure 14: Prototype made of spring steel using a wire cut 
Electro Discharge Machining (EDM). Loads are applied as 
shown in the figure. 2 SMA wires are connected along 
both X and Y axis to actuate the mechanism. The mini-
mum feature size 125 mµ and the overall size of the 
mechanism is 150   150  mm mm×  

6  Closure 

In this paper, a design for large-range compliant X-Y mi-
cro stage is obtained by topology optimization. The main 
feature of the micro stage is that it is obtained my maxi-
mizing the workspace and de-coupling the motion in the 
two directions. The obtained mechanism has a larger spe-

Fx

Fy 

Stage

II quadrant 

III quadrant IV quadrant 

I quadrant 

 

yF  

Stage 
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cific range of motion than the existing compliant stages. 
This is important because actuators that can give large 
force usually have low stroke. The de-coupling is not per-
fect but is agreeable to a large extent in the I quadrant. 
Further modification of the objective function will be pur-
sued to achieve improved de-coupling. The wire-cut EDM 
was used to make a working prototype using spring steel 
foils. SMA actuation was used to demonstrate that the 
stage works as intended. In the future work, manufacturing 
constraints, stress constraints, and dynamic behavior of the 
mechanisms will be included in the optimization problem.      
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